区块链内存 区块链存储器

皕利分享 117 0

今天给各位分享区块链内存的知识,其中也会对区块链存储器进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

刚刚了解,谁能告诉我区块链是什么?通俗解释一下区块链技术的方法?

大家共同记账区块链内存的方式,也被称为“分布式”或“去中心化”,因为人人都记账,且账本的准确性由程式算法决定,而非某个权威机构。

这就是区块链,核心讲完了,区块链就这么简单,一个共同记账的账本

区块链技术六大核心算法:

区块链核心算法一:拜占庭协定

拜占庭的故事大概是这么说的:拜占庭帝国拥有巨大的财富,周围10个邻邦垂诞已久,但拜占庭高墙耸立,固若金汤,没有一个单独的邻邦能够成功入侵。任何单个邻邦入侵的都会失败,同时也有可能自身被其区块链内存他9个邻邦入侵。拜占庭帝国防御能力如此之强,至少要有十个邻邦中的一半以上同时进攻,才有可能攻破。然而,如果其中的一个或者几个邻邦本身答应好一起进攻,但实际过程出现背叛,那么入侵者可能都会被歼灭。于是每一方都小心行事,不敢轻易相信邻国。这就是拜占庭将军问题。

区块链核心算法二:非对称加密技术

在上述拜占庭协定中,如果10个将军中的几个同时发起消息,势必会造成系统的混乱,造成各说各的攻击时间方案,行动难以一致。谁都可以发起进攻的信息,但由谁来发出呢?其实这只要加入一个成本就可以了,即:一段时间内只有一个节点可以传播信息。当某个节点发出统一进攻的消息后,各个节点收到发起者的消息必须签名盖章,确认各自的身份。

区块链核心算法三:容错问题

区块链内存我们假设在此网络中,消息可能会丢失、损坏、延迟、重复发送,并且接受的顺序与发送的顺序不一致。此外,节点的行为可以是任意的:可以随时加入、退出网络,可以丢弃消息、伪造消息、停止工作等,还可能发生各种人为或非人为的故障。我们的算法对由共识节点组成的共识系统,提供的容错能力,这种容错能力同时包含安全性和可用性,并适用于任何网络环境。

区块链核心算法四:Paxos 算法(一致性算法)

Paxos算法解决的问题是一个分布式系统如何就某个值(决议)达成一致。一个典型的场景是,在一个分布式数据库系统中,如果各节点的初始状态一致,每个节点都执行相同的操作序列,那么区块链内存他们最后能得到一个一致的状态。为保证每个节点执行相同的命令序列,需要在每一条指令上执行一个“一致性算法”以保证每个节点看到的指令一致。一个通用的一致性算法可以应用在许多场景中,是分布式计算中的重要问题。 节点通信存在两种模型:共享内存和消息传递。Paxos算法就是一种基于消息传递模型的一致性算法。

区块链核心算法五:共识机制

区块链共识算法主要是工作量证明和权益证明。拿比特币来说,其实从技术角度来看可以把PoW看成重复使用的Hashcash,生成工作量证明在概率上来说是一个随机的过程。开采新的机密货币,生成区块时,必须得到所有参与者的同意,那矿工必须得到区块中所有数据的PoW工作证明。与此同时矿工还要时时观察调整这项工作的难度,因为对网络要求是平均每10分钟生成一个区块。

区块链核心算法六:分布式存储是一种数据存储技术,通过网络使用每台机器上的磁盘空间,并将这些分散的存储资源构成一个虚拟的存储设备,数据分散的存储在网络中的各个角落。所以,分布式存储技术并不是每台电脑都存放完整的数据,而是把数据切割后存放在不同的电脑里。就像存放100个鸡蛋,不是放在同一个篮子里,而是分开放在不同的地方,加起来的总和是100个。想了解更多可以多利用百度搜索,百度搜索结果-小知识

金窝窝的区块链技术是如何将数据进行储存的?

简单的来说,区块链的数据储存是通过区块通过公式算法过程后被正式纳入区块链中储存,全网节点均表示接受该区块,而表示接受的方法,就是将区块的随机散列值是为最新的区块散列值,兴趣快的制造将以该区块链为基础进行延长。

区块链的核心技术是什么?

简单来说,区块链是一个提供了拜占庭容错、并保证了最终一致性的分布式数据库;从数据结构上看,它是基于时间序列的链式数据块结构;从节点拓扑上看,它所有的节点互为冗余备份;从操作上看,它提供了基于密码学的公私钥管理体系来管理账户。

或许以上概念过于抽象,我来举个例子,你就好理解了。

你可以想象有 100 台计算机分布在世界各地,这 100 台机器之间的网络是广域网,并且,这 100 台机器的拥有者互相不信任。

那么,我们采用什么样的算法(共识机制)才能够为它提供一个可信任的环境,并且使得:

节点之间的数据交换过程不可篡改,并且已生成的历史记录不可被篡改;

每个节点的数据会同步到最新数据,并且会验证最新数据的有效性;

基于少数服从多数的原则,整体节点维护的数据可以客观反映交换历史。

区块链就是为了解决上述问题而产生的技术方案。

二、区块链的核心技术组成

无论是公链还是联盟链,至少需要四个模块组成:P2P 网络协议、分布式一致性算法(共识机制)、加密签名算法、账户与存储模型。

1、P2P 网络协议

P2P 网络协议是所有区块链的最底层模块,负责交易数据的网络传输和广播、节点发现和维护。

通常我们所用的都是比特币 P2P 网络协议模块,它遵循一定的交互原则。比如:初次连接到其他节点会被要求按照握手协议来确认状态,在握手之后开始请求 Peer 节点的地址数据以及区块数据。

这套 P2P 交互协议也具有自己的指令集合,指令体现在在消息头(Message Header) 的 命令(command)域中,这些命令为上层提供了节点发现、节点获取、区块头获取、区块获取等功能,这些功能都是非常底层、非常基础的功能。如果你想要深入了解,可以参考比特币开发者指南中的 Peer Discovery 的章节。

2、分布式一致性算法

在经典分布式计算领域,我们有 Raft 和 Paxos 算法家族代表的非拜占庭容错算法,以及具有拜占庭容错特性的 PBFT 共识算法。

如果从技术演化的角度来看,我们可以得出一个图,其中,区块链技术把原来的分布式算法进行了经济学上的拓展。

在图中我们可以看到,计算机应用在最开始多为单点应用,高可用方便采用的是冷灾备,后来发展到异地多活,这些异地多活可能采用的是负载均衡和路由技术,随着分布式系统技术的发展,我们过渡到了 Paxos 和 Raft 为主的分布式系统。

而在区块链领域,多采用 PoW 工作量证明算法、PoS 权益证明算法,以及 DPoS 代理权益证明算法,以上三种是业界主流的共识算法,这些算法与经典分布式一致性算法不同的是,它们融入了经济学博弈的概念,下面我分别简单介绍这三种共识算法。

PoW: 通常是指在给定的约束下,求解一个特定难度的数学问题,谁解的速度快,谁就能获得记账权(出块)权利。这个求解过程往往会转换成计算问题,所以在比拼速度的情况下,也就变成了谁的计算方法更优,以及谁的设备性能更好。

PoS: 这是一种股权证明机制,它的基本概念是你产生区块的难度应该与你在网络里所占的股权(所有权占比)成比例,它实现的核心思路是:使用你所锁定代币的币龄(CoinAge)以及一个小的工作量证明,去计算一个目标值,当满足目标值时,你将可能获取记账权。

DPoS: 简单来理解就是将 PoS 共识算法中的记账者转换为指定节点数组成的小圈子,而不是所有人都可以参与记账。这个圈子可能是 21 个节点,也有可能是 101 个节点,这一点取决于设计,只有这个圈子中的节点才能获得记账权。这将会极大地提高系统的吞吐量,因为更少的节点也就意味着网络和节点的可控。

3、加密签名算法

在区块链领域,应用得最多的是哈希算法。哈希算法具有抗碰撞性、原像不可逆、难题友好性等特征。

其中,难题友好性正是众多 PoW 币种赖以存在的基础,在比特币中,SHA256 算法被用作工作量证明的计算方法,也就是我们所说的挖矿算法。

而在莱特币身上,我们也会看到 Scrypt 算法,该算法与 SHA256 不同的是,需要大内存支持。而在其他一些币种身上,我们也能看到基于 SHA3 算法的挖矿算法。以太坊使用了 Dagger-Hashimoto 算法的改良版本,并命名为 Ethash,这是一个 IO 难解性的算法。

当然,除了挖矿算法,我们还会使用到 RIPEMD160 算法,主要用于生成地址,众多的比特币衍生代码中,绝大部分都采用了比特币的地址设计。

除了地址,我们还会使用到最核心的,也是区块链 Token 系统的基石:公私钥密码算法。

在比特币大类的代码中,基本上使用的都是 ECDSA。ECDSA 是 ECC 与 DSA 的结合,整个签名过程与 DSA 类似,所不一样的是签名中采取的算法为 ECC(椭圆曲线函数)。

从技术上看,我们先从生成私钥开始,其次从私钥生成公钥,最后从公钥生成地址,以上每一步都是不可逆过程,也就是说无法从地址推导出公钥,从公钥推导到私钥。

4、账户与交易模型

从一开始的定义我们知道,仅从技术角度可以认为区块链是一种分布式数据库,那么,多数区块链到底使用了什么类型的数据库呢?

我在设计元界区块链时,参考了多种数据库,有 NoSQL 的 BerkelyDB、LevelDB,也有一些币种采用基于 SQL 的 SQLite。这些作为底层的存储设施,多以轻量级嵌入式数据库为主,由于并不涉及区块链的账本特性,这些存储技术与其他场合下的使用并没有什么不同。

区块链的账本特性,通常分为 UTXO 结构以及基于 Accout-Balance 结构的账本结构,我们也称为账本模型。UTXO 是“unspent transaction input/output”的缩写,翻译过来就是指“未花费的交易输入输出”。

这个区块链中 Token 转移的一种记账模式,每次转移均以输入输出的形式出现;而在 Balance 结构中,是没有这个模式的。

Chainge技术沙龙(0414)-区块链技术的安全隐患

虚拟机设计

零钱整理

慢雾科技介绍

01| The Dao事件

以太坊第一个安全大事件

智能合约的取款

新建一个Bank区块链内存,存入一部分钱,用Dao框架不停取钱。

取款-判断余额-取款操作框架-转空该账户下的所有钱。

简单的例子就是,区块链内存你的银行卡有余额100万,你需要买一个10块钱的饮料,但是支付的过程有漏洞,所以你银行卡的所有钱都被转走。

一、外部调用

02| 以太坊黑色情人节

起源:第一转账时间是2.14

ETH节点统计

客户端、客户端版本、OS系统。整个系统的庞杂

蜜罐检测 (部署陷阱能检测出黑客的点来)

net_version

判断是主网还是测试网,只攻击主网

3000+主网节点完全暴露

eth_accounts

获取钱包账号,涉及钱包账号

eth_getBanlance

获取有多少钱,被盗46000+ETH

why?

unlockAccount 函数介绍

该函数将使用密码从本地的keystore 里提取private key 并存储在内存中,函数第三个参数duration 表示解密后private key 在内存中保存默认是300 秒; 如果设置为0,则表的时间,示永久存留在内存,直至Geth/Parity 退出。

详见:

节点存用户的keystore信息(严重危险)

eth_getBlockByNumber

墨子扫描引擎,扫描有问题的节点,慢雾的以太坊安全事件的披露

被盗ETH,市值,被盗钱包数

具体内容可以查看慢雾发布的 以太坊黑色情人节专题

生态相关

ETH:矿池、钱包、web3、smart contract、dapp

BTC:矿池、钱包、Lightning Network

BTC RPC

防御建议

管理数十万用户安全的接近百万的比特币

华人世界唯一被bitcoin.org网站展示的钱包

比特派多种区块链资产(BTC、ETH、Token、分叉)

冷热结合,确保安全

比特派-热钱包

比特护盾-冷钱包/硬件钱包

区块链安全事件

私钥决定区块链内存了区块链资产的所有权,丢了私钥也就相当于丢了一切。私钥就是一个随机数,这个随机数的概率空间很大(256 位,即2^256)

钱包=生态入口

需要在安全的同时做到尽可能的开放

玩法的开放,技术的开放,通用的技术接口,生态的开放,把自己的资源进行导入。合作伙伴计划:技术咨询、区块链技术支持、开放平台、入口支持、生态支持、海外市场合作。帮助伙伴实现区块链转型或区块链项目孵化,安全、便捷实现真正落地的区块链应用场景。

联系方式 B@bitpie.com

用户风控系统,数百万的数字货币用户。

最大可能保持区块链内存我们的数字资产

骗子故事:抢数字货币份额,钱没到账,冒充官方,交出助记词

恶意钱包地址库

诈骗钱包、黑客钱包、羊毛党钱包

恶意网站库

钓鱼网站、空投网站、交易所、众筹

风险合约库

重名币、空格币、风险合约

安全事件库

历史安全事件提醒

最新事件提醒

盗币风险监控

安全意识教育

可能出现被盗的情况

游戏即资产,稀缺资源,成为游戏运营者。最后大BOSS死于暴露了自己的密钥。

通过社工(社会工程学)【欺骗的艺术】黑客攻击手法,虚拟景象做出错误判断让自己陷入危机。

人始终是系统中最薄弱的环节,币安背锅的黑客事件。大客户泄露自己的账户,调用API接口,自动交易。虽然没丢币但是黑客在期货市场盈利。

关于安全钱包的帖子(来自小白愤怒控诉,实际没有理解整个机制):

1、我没私钥和交易密码,东西都在你们那我不知道安全在哪里

2、密语算个毛,你告诉我拿着你们的密语能做什么。

汽车和自行车事件,出了问题之后,弱势的一方被原谅。负责的是更大的一方。平台替没有安全意识的用户背锅。

对于大部分用户来说,交易所的安全性比普通用户自己管理的安全性要高,用户的安全意识没有提高,交给交易所帮助、协助你来管理你的钱包提示很多风险操作。

为什么要随机生成256位的密钥,为什么不能用户自己去设置,如果自己设置会处于一个集中的区域,随机值不够,私钥生成时就处于危险的状态。

自己的安全认识不够,所以自己造成的损失,先怼交易所先怼钱包。先想到得是你们的问题和漏洞造成的,不是我的操作失误和密钥泄露造成的。

币派做的是大神和小白的交流之间的翻译,做画漫画,写段子的逗比。

币小宝防骗指南漫画,贡献题材和内容。

写到这里,本文关于区块链内存和区块链存储器的介绍到此为止了,如果能碰巧解决你现在面临的问题,如果你还想更加了解这方面的信息,记得收藏关注本站。

标签: #区块链内存

  • 评论列表

留言评论