区块链内存池 区块链流动性池

皕利分享 181 0

今天给大家聊到了区块链内存池,以及区块链流动性池相关的内容,在此希望可以让网友有所了解,最后记得收藏本站。

区块链在技术层面有哪几种属性

区块链技术起源于化名为“中本聪”(Satoshi Nakamoto)的学者在2008年发表的奠基性论文《比特币: 一种点对点电子现金系统》。狭义来讲, 区块链是一种按照时间顺序将数据区块以顺序相连的方式组合成的一种链式数据结构, 并以密码学方式保证的不可篡改和不可伪造的分布式账本。区块链网络的技术属性主要在于:匿名性、去中心化、不可篡改、分布式存储、多备份、数据加密等。匿名性是指在区块链网络中任何一个用户在交易的过程中,发送的交易数据中都不包含任何和个人信息有关的数据,用户和用户之间通过地址进行交易,而且地址理论上可以无限生成。去中心化是指通过多节点共同决策达成共识的方法,将原本的单一管理决策方案转换成多方共同商量决策,并且区块链网络中的所有节点拥有平等的数据控制权利和义务,任何节点都可以访问区块链网络中存储的数据,访问的过程可以同步并发执行。不可篡改是指区块链除创世区块以外,之后的每一个区块中都包含有上一个区块中数据的唯一哈希值,然后通过唯一的哈希值将各个区块进行串联。一旦其中某一个节点的区块数据被更改,此区块生成的哈希值也会改变。在区块连接的过程中,后面的区块无法找到其前区块哈希值所对应的区块,区块链也就被迫断开,该节点所保存的数据就不再被其他节点承认,变得没有价值。分布式存储和多备份的概念和现在数据库的分布式存储不同。区块链的分布式存储不仅是将数据存储在不同的地理位置和物理设备上,每个设备中都有完整的账本数据,而不是数据碎片,通过使用 Merkle 树技术在一定程度上解决数据冗余的问题。数据加密主要是指通过非对称加密的方式对数据使用公钥进行加密私钥进行解密或者私钥加密公钥解密。这种加密方式在数据传输的过程中,数据中不必包含数据解密的密钥,而是通过接收方手中的密钥完成解密操作,排除数据传输过程中被截取所带来的信息安全隐患。

吴超人会飞

帖子数 1.0千 获赞数 20

rollup扩容是什么

什么叫数字人民币

什么是RBF内存池

比特币网络的运行逻辑

阅读作者更多精彩帖子

最佳回答

转载bitsbetter海盗王2021-08-0510:17:0810楼:囤币是屯在链上,只需要一个确认安全的私钥和对应的地址,地址才是真钱包。一般所谓的“钱包”都是私钥包。bitsbetter海盗王2021-08-0511:15:3112楼:把私钥放在别人提 ...

来源

比特币是一种货币。SaifedeanAmmous写了一本名为《比特币标准》的书,他在书中设定了一系列测试,以明确货币必须具有哪些特质,并将其分为三个主要类别:货币必须具有这些特质:第一点是具有价值存储功能(即保值、 ...

来源

比特币之挖矿与共识(二)

比特币共识机制的第三步是通过网络中的每个节点独立校验每个新区块。当新区块在网络中传播时,每一个节点在将它 转发到其节点之前,会进行一系列的测试去验证它。这确保了只有有效的区块会在网络中传播。

独立校验还确保了诚实 的矿工生成的区块可以被纳入到区块链中,从而获得奖励。行为不诚实的矿工所产生的区块将被拒绝,这不但使他们失 去了奖励,而且也浪费了本来可以去寻找工作量证明解的机会,因而导致其电费亏损。

当一个节点接收到一个新的区块,它将对照一个长长的标准清单对该区块进行验证,若没有通过验证,这个区块将被拒 绝。这些标准可以在比特币核心客户端的CheckBlock函数和CheckBlockHead函数中获得

它包括:

为什么矿工不为他们自己记录一笔交易去获得数以千计的比特币?

这 是因为每一个节点根据相同的规则对区块进行校验。一个无效的coinbase交易将使整个区块无效,这将导致该区块被拒 绝,因此,该交易就不会成为总账的一部分。矿工们必须构建一个完美的区块,基于所有节点共享的规则,并且根据正 确工作量证明的解决方案进行挖矿,他们要花费大量的电力挖矿才能做到这一点。如果他们作弊,所有的电力和努力都 会浪费。这就是为什么独立校验是去中心化共识的重要组成部分。

比特币去中心化的共识机制的最后一步是将区块集合至有最大工作量证明的链中。一旦一个节点验证了一个新的区块, 它将尝试将新的区块连接到到现存的区块链,将它们组装起来。

节点维护三种区块:第一种是连接到主链上的,第二种是从主链上产生分支的(备用链),最后一种是在已知链中没有 找到已知父区块的。在验证过程中,一旦发现有不符合标准的地方,验证就会失败,这样区块会被节点拒绝,所以也不 会加入到任何一条链中。

任何时候,主链都是累计了最多难度的区块链。在一般情况下,主链也是包含最多区块的那个链,除非有两个等长的链 并且其中一个有更多的工作量证明。主链也会有一些分支,这些分支中的区块与主链上的区块互为“兄弟”区块。这些区 块是有效的,但不是主链的一部分。 保留这些分支的目的是如果在未来的某个时刻它们中的一个延长了并在难度值上超 过了主链,那么后续的区块就会引用它们。

如果节点收到了一个有效的区块,而在现有的区块链中却未找到它的父区块,那么这个区块被认为是“孤块”。孤块会被 保存在孤块池中,直到它们的父区块被节点收到。一旦收到了父区块并且将其连接到现有区块链上,节点就会将孤块从 孤块池中取出,并且连接到它的父区块,让它作为区块链的一部分。当两个区块在很短的时间间隔内被挖出来,节点有 可能会以相反的顺序接收到它们,这个时候孤块现象就会出现。

选择了最大难度的区块链后,所有的节点最终在全网范围内达成共识。随着更多的工作量证明被添加到链中,链的暂时性差异最终会得到解决。挖矿节点通过“投票”来选择它们想要延长的区块链,当它们挖出一个新块并且延长了一个链, 新块本身就代表它们的投票。

因为区块链是去中心化的数据结构,所以不同副本之间不能总是保持一致。区块有可能在不同时间到达不同节点,导致节点有不同的区块链全貌。

解决的办法是,每一个节点总是选择并尝试延长代表累计了最大工作量证明的区块链,也就 是最长的或最大累计工作的链(greatest cumulative work chain)。节点通过累加链上的每个区块的工作量,得到建立这个链所要付出的工作量证明的总量。只要所有的节点选择最长累计工作的区块链,整个比特币网络最终会收敛到一致的状态。分叉即在不同区块链间发生的临时差异,当更多的区块添加到了某个分叉中,这个问题便会迎刃而解。

提示由于全球网络中的传输延迟,本节中描述的区块链分叉自动会发生。

然而,倒三角形的区块不会被丢弃。它被链接到星形链的父区块,并形成备用链。虽然节点X认为自己已经正确选择了获胜链,但是它还会保存“丢失”链,使得“丢失”链如果可能最终“获胜”,它还具有重新打包的所需的信息。

这是一个链的重新共识,因为这些节点被迫修改他们对块链的立场,把自己纳入更长的链。任何从事延伸星形-倒三角形的矿工现在都将停止这项工作,因为他们的候选人是“孤儿”,因为他们的父母“倒三角形”不再是最长的连锁。

“倒三角形”内的交易重新插入到内存池中用来包含在下一个块中,因为它们所在的块不再位于主链中。

整个网络重新回到单一链状态,星形-三角形-菱形,“菱形”成为链中的最后一个块。所有矿工立即开始研究以“菱形”为父区块的候选块,以扩展这条星形-三角形-菱形链。

从理论上来说,两个区块的分叉是有可能的,这种情况发生在因先前分叉而相互对立起来的矿工,又几乎同时发现了两个不同区块的解。

然而,这种情况发生的几率是很低的。单区块分叉每周都会发生,而双块分叉则非常罕见。比特币将区块间隔设计为10分钟,是在更快速的交易确认和更低的分叉概率间作出的妥协。更短的区块产生间隔会让交易清算更快地完成,也会导致更加频繁地区块链分叉。与之相对地,更长的间隔会减少分叉数量,却会导致更长的清算时间。

2012年以来,比特币挖矿发展出一个解决区块头基本结构限制的方案。在比特币的早期,矿工可以通过遍历随机数 (Nonce)获得符合要求的hash来挖出一个块。

难度增长后,矿工经常在尝试了40亿个值后仍然没有出块。然而,这很容 易通过读取块的时间戳并计算经过的时间来解决。因为时间戳是区块头的一部分,它的变化可以让矿工用不同的随机值 再次遍历。当挖矿硬件的速度达到了4GH/秒,这种方法变得越来越困难,因为随机数的取值在一秒内就被用尽了。

当出现ASIC矿机并很快达到了TH/秒的hash速率后,挖矿软件为了找到有效的块, 需要更多的空间来储存nonce值 。可以把时间戳延后一点,但将来如果把它移动得太远,会导致区块变为无效。

区块头需要信息来源的一个新的“变革”。解决方案是使用coinbase交易作为额外的随机值来源,因为coinbase脚本可以储存2-100字节的数据,矿工们开始使用这个空间作为额外随机值的来源,允许他们去探索一个大得多的区块头值范围来找到有效的块。这个coinbase交易包含在merkle树中,这意味着任何coinbase脚本的变化将导致Merkle根的变化。

8个字节的额外随机数,加上4个字节的“标准”随机数,允许矿工每秒尝试2^96(8后面跟28个零)种可能性而无需修改时间戳。如果未来矿工穿过了以上所有的可能性,他们还可以通过修改时间戳来解决。同样,coinbase脚本中也有更多额外的空间可以为将来随机数的扩展做准备。

比特币的共识机制指的是,被矿工(或矿池)试图使用自己的算力实行欺骗或破坏的难度很大,至少理论上是这样。就像我们前面讲的,比特币的共识机制依赖于这样一个前提,那就是绝大多数的矿工,出于自己利益最大化的考虑,都会 通过诚实地挖矿来维持整个比特币系统。然而,当一个或者一群拥有了整个系统中大量算力的矿工出现之后,他们就可以通过攻击比特币的共识机制来达到破坏比特币网络的安全性和可靠性的目的。

值得注意的是,共识攻击只能影响整个区块链未来的共识,或者说,最多能影响不久的过去几个区块的共识(最多影响过去10个块)。而且随着时间的推移,整个比特币块链被篡改的可能性越来越低。

理论上,一个区块链分叉可以变得很长,但实际上,要想实现一个非常长的区块链分叉需要的算力非常非常大,随着整个比特币区块链逐渐增长,过去的区块基本可以认为是无法被分叉篡改的。

同时,共识攻击也不会影响用户的私钥以及加密算法(ECDSA)。

共识攻击也 不能从其他的钱包那里偷到比特币、不签名地支付比特币、重新分配比特币、改变过去的交易或者改变比特币持有纪录。共识攻击能够造成的唯一影响是影响最近的区块(最多10个)并且通过拒绝服务来影响未来区块的生成。

共识攻击的一个典型场景就是“51%攻击”。想象这么一个场景,一群矿工控制了整个比特币网络51%的算力,他们联合起来打算攻击整个比特币系统。由于这群矿工可以生成绝大多数的块,他们就可以通过故意制造块链分叉来实现“双重支 付”或者通过拒绝服务的方式来阻止特定的交易或者攻击特定的钱包地址。

区块链分叉/双重支付攻击指的是攻击者通过 不承认最近的某个交易,并在这个交易之前重构新的块,从而生成新的分叉,继而实现双重支付。有了充足算力的保证,一个攻击者可以一次性篡改最近的6个或者更多的区块,从而使得这些区块包含的本应无法篡改的交易消失。

值得注意的是,双重支付只能在攻击者拥有的钱包所发生的交易上进行,因为只有钱包的拥有者才能生成一个合法的签名用于双重支付交易。攻击者在自己的交易上进行双重支付攻击,如果可以通过使交易无效而实现对于不可逆转的购买行为不予付款, 这种攻击就是有利可图的。

攻击者Mallory在Carol的画廊买了描绘伟大的中本聪的三联组画(The Great Fire),Mallory通过转账价值25万美金的比特币 与Carol进行交易。在等到一个而不是六个交易确认之后,Carol放心地将这幅组画包好,交给了Mallory。这时,Mallory 的一个同伙,一个拥有大量算力的矿池的人Paul,在这笔交易写进区块链的时候,开始了51%攻击。

首先,Paul利用自己矿池的算力重新计算包含这笔交易的块,并且在新块里将原来的交易替换成了另外一笔交易(比如直接转给了Mallory 的另一个钱包而不是Carol的),从而实现了“双重支付”。这笔“双重支付”交易使用了跟原有交易一致的UTXO,但收款人被替换成了Mallory的钱包地址。

然后,Paul利用矿池在伪造的块的基础上,又计算出一个更新的块,这样,包含这 笔“双重支付”交易的块链比原有的块链高出了一个块。到此,高度更高的分叉区块链取代了原有的区块链,“双重支付”交 易取代了原来给Carol的交易,Carol既没有收到价值25万美金的比特币,原本拥有的三幅价值连城的画也被Mallory白白 拿走了。

在整个过程中,Paul矿池里的其他矿工可能自始至终都没有觉察到这笔“双重支付”交易有什么异样,因为挖矿程序都是自动在运行,并且不会时时监控每一个区块中的每一笔交易。

为了避免这类攻击,售卖大宗商品的商家应该在交易得到全网的6个确认之后再交付商品。或者,商家应该使用第三方 的多方签名的账户进行交易,并且也要等到交易账户获得全网多个确认之后再交付商品。一条交易的确认数越多,越难 被攻击者通过51%攻击篡改。

对于大宗商品的交易,即使在付款24小时之后再发货,对买卖双方来说使用比特币支付也 是方便并且有效率的。而24小时之后,这笔交易的全网确认数将达到至少144个(能有效降低被51%攻击的可能性)。

需要注意的是,51%攻击并不是像它的命名里说的那样,攻击者需要至少51%的算力才能发起,实际上,即使其拥有不 到51%的系统算力,依然可以尝试发起这种攻击。之所以命名为51%攻击,只是因为在攻击者的算力达到51%这个阈值 的时候,其发起的攻击尝试几乎肯定会成功。

本质上来看,共识攻击,就像是系统中所有矿工的算力被分成了两组,一 组为诚实算力,一组为攻击者算力,两组人都在争先恐后地计算块链上的新块,只是攻击者算力算出来的是精心构造 的、包含或者剔除了某些交易的块。因此,攻击者拥有的算力越少,在这场决逐中获胜的可能性就越小。

从另一个角度 讲,一个攻击者拥有的算力越多,其故意创造的分叉块链就可能越长,可能被篡改的最近的块或者或者受其控制的未来 的块就会越多。一些安全研究组织利用统计模型得出的结论是,算力达到全网的30%就足以发动51%攻击了。全网算力的急剧增长已经使得比特币系统不再可能被某一个矿工攻击,因为一个矿工已经不可能占据全网哪怕的1%算 力。

待补充

待补充

详解比特币挖矿原理

可以将区块链看作一本记录所有交易的公开总帐簿(列表),比特币网络中的每个参与者都把它看作一本所有权的权威记录。

比特币没有中心机构,几乎所有的完整节点都有一份公共总帐的备份,这份总帐可以被视为认证过的记录。

至今为止,在主干区块链上,没有发生一起成功的攻击,一次都没有。

通过创造出新区块,比特币以一个确定的但不断减慢的速率被铸造出来。大约每十分钟产生一个新区块,每一个新区块都伴随着一定数量从无到有的全新比特币。每开采210,000个块,大约耗时4年,货币发行速率降低50%。

在2016年的某个时刻,在第420,000个区块被“挖掘”出来之后降低到12.5比特币/区块。在第13,230,000个区块(大概在2137年被挖出)之前,新币的发行速度会以指数形式进行64次“二等分”。到那时每区块发行比特币数量变为比特币的最小货币单位——1聪。最终,在经过1,344万个区块之后,所有的共20,999,999.9769亿聪比特币将全部发行完毕。换句话说, 到2140年左右,会存在接近2,100万比特币。在那之后,新的区块不再包含比特币奖励,矿工的收益全部来自交易费。

在收到交易后,每一个节点都会在全网广播前对这些交易进行校验,并以接收时的相应顺序,为有效的新交易建立一个池(交易池)。

每一个节点在校验每一笔交易时,都需要对照一个长长的标准列表:

交易的语法和数据结构必须正确。

输入与输出列表都不能为空。

交易的字节大小是小于MAX_BLOCK_SIZE的。

每一个输出值,以及总量,必须在规定值的范围内 (小于2,100万个币,大于0)。

没有哈希等于0,N等于-1的输入(coinbase交易不应当被中继)。

nLockTime是小于或等于INT_MAX的。

交易的字节大小是大于或等于100的。

交易中的签名数量应小于签名操作数量上限。

解锁脚本(Sig)只能够将数字压入栈中,并且锁定脚本(Pubkey)必须要符合isStandard的格式 (该格式将会拒绝非标准交易)。

池中或位于主分支区块中的一个匹配交易必须是存在的。

对于每一个输入,如果引用的输出存在于池中任何的交易,该交易将被拒绝。

对于每一个输入,在主分支和交易池中寻找引用的输出交易。如果输出交易缺少任何一个输入,该交易将成为一个孤立的交易。如果与其匹配的交易还没有出现在池中,那么将被加入到孤立交易池中。

对于每一个输入,如果引用的输出交易是一个coinbase输出,该输入必须至少获得COINBASE_MATURITY (100)个确认。

对于每一个输入,引用的输出是必须存在的,并且没有被花费。

使用引用的输出交易获得输入值,并检查每一个输入值和总值是否在规定值的范围内 (小于2100万个币,大于0)。

如果输入值的总和小于输出值的总和,交易将被中止。

如果交易费用太低以至于无法进入一个空的区块,交易将被拒绝。

每一个输入的解锁脚本必须依据相应输出的锁定脚本来验证。

以下挖矿节点取名为 A挖矿节点

挖矿节点时刻监听着传播到比特币网络的新区块。而这些新加入的区块对挖矿节点有着特殊的意义。矿工间的竞争以新区块的传播而结束,如同宣布谁是最后的赢家。对于矿工们来说,获得一个新区块意味着某个参与者赢了,而他们则输了这场竞争。然而,一轮竞争的结束也代表着下一轮竞争的开始。

验证交易后,比特币节点会将这些交易添加到自己的内存池中。内存池也称作交易池,用来暂存尚未被加入到区块的交易记录。

A节点需要为内存池中的每笔交易分配一个优先级,并选择较高优先级的交易记录来构建候选区块。

一个交易想要成为“较高优先级”,需满足的条件:优先值大于57,600,000,这个值的生成依赖于3个参数:一个比特币(即1亿聪),年龄为一天(144个区块),交易的大小为250个字节:

High Priority 100,000,000 satoshis * 144 blocks / 250 bytes = 57,600,000

区块中用来存储交易的前50K字节是保留给较高优先级交易的。 节点在填充这50K字节的时候,会优先考虑这些最高优先级的交易,不管它们是否包含了矿工费。这种机制使得高优先级交易即便是零矿工费,也可以优先被处理。

然后,A挖矿节点会选出那些包含最小矿工费的交易,并按照“每千字节矿工费”进行排序,优先选择矿工费高的交易来填充剩下的区块。

如区块中仍有剩余空间,A挖矿节点可以选择那些不含矿工费的交易。有些矿工会竭尽全力将那些不含矿工费的交易整合到区块中,而其他矿工也许会选择忽略这些交易。

在区块被填满后,内存池中的剩余交易会成为下一个区块的候选交易。因为这些交易还留在内存池中,所以随着新的区块被加到链上,这些交易输入时所引用UTXO的深度(即交易“块龄”)也会随着变大。由于交易的优先值取决于它交易输入的“块龄”,所以这个交易的优先值也就随之增长了。最后,一个零矿工费交易的优先值就有可能会满足高优先级的门槛,被免费地打包进区块。

UTXO(Unspent Transaction Output) : 每笔交易都有若干交易输入,也就是资金来源,也都有若干笔交易输出,也就是资金去向。一般来说,每一笔交易都要花费(spend)一笔输入,产生一笔输出,而其所产生的输出,就是“未花费过的交易输出”,也就是 UTXO。

块龄:UTXO的“块龄”是自该UTXO被记录到区块链为止所经历过的区块数,即这个UTXO在区块链中的深度。

区块中的第一笔交易是笔特殊交易,称为创币交易或者coinbase交易。这个交易是由挖矿节点构造并用来奖励矿工们所做的贡献的。假设此时一个区块的奖励是25比特币,A挖矿的节点会创建“向A的地址支付25.1个比特币(包含矿工费0.1个比特币)”这样一个交易,把生成交易的奖励发送到自己的钱包。A挖出区块获得的奖励金额是coinbase奖励(25个全新的比特币)和区块中全部交易矿工费的总和。

A节点已经构建了一个候选区块,那么就轮到A的矿机对这个新区块进行“挖掘”,求解工作量证明算法以使这个区块有效。比特币挖矿过程使用的是SHA256哈希函数。

用最简单的术语来说, 挖矿节点不断重复进行尝试,直到它找到的随机调整数使得产生的哈希值低于某个特定的目标。 哈希函数的结果无法提前得知,也没有能得到一个特定哈希值的模式。举个例子,你一个人在屋里打台球,白球从A点到达B点,但是一个人推门进来看到白球在B点,却无论如何是不知道如何从A到B的。哈希函数的这个特性意味着:得到哈希值的唯一方法是不断的尝试,每次随机修改输入,直到出现适当的哈希值。

需要以下参数

• block的版本 version

• 上一个block的hash值: prev_hash

• 需要写入的交易记录的hash树的值: merkle_root

• 更新时间: ntime

• 当前难度: nbits

挖矿的过程就是找到x使得

SHA256(SHA256(version + prev_hash + merkle_root + ntime + nbits + x )) TARGET

上式的x的范围是0~2^32, TARGET可以根据当前难度求出的。

简单打个比方,想象人们不断扔一对色子以得到小于一个特定点数的游戏。第一局,目标是12。只要你不扔出两个6,你就会赢。然后下一局目标为11。玩家只能扔10或更小的点数才能赢,不过也很简单。假如几局之后目标降低为了5。现在有一半机率以上扔出来的色子加起来点数会超过5,因此无效。随着目标越来越小,要想赢的话,扔色子的次数会指数级的上升。最终当目标为2时(最小可能点数),只有一个人平均扔36次或2%扔的次数中,他才能赢。

如前所述,目标决定了难度,进而影响求解工作量证明算法所需要的时间。那么问题来了:为什么这个难度值是可调整的?由谁来调整?如何调整?

比特币的区块平均每10分钟生成一个。这就是比特币的心跳,是货币发行速率和交易达成速度的基础。不仅是在短期内,而是在几十年内它都必须要保持恒定。在此期间,计算机性能将飞速提升。此外,参与挖矿的人和计算机也会不断变化。为了能让新区块的保持10分钟一个的产生速率,挖矿的难度必须根据这些变化进行调整。事实上,难度是一个动态的参数,会定期调整以达到每10分钟一个新区块的目标。简单地说,难度被设定在,无论挖矿能力如何,新区块产生速率都保持在10分钟一个。

那么,在一个完全去中心化的网络中,这样的调整是如何做到的呢?难度的调整是在每个完整节点中独立自动发生的。每2,016个区块(2周产生的区块)中的所有节点都会调整难度。难度的调整公式是由最新2,016个区块的花费时长与20,160分钟(两周,即这些区块以10分钟一个速率所期望花费的时长)比较得出的。难度是根据实际时长与期望时长的比值进行相应调整的(或变难或变易)。简单来说,如果网络发现区块产生速率比10分钟要快时会增加难度。如果发现比10分钟慢时则降低难度。

为了防止难度的变化过快,每个周期的调整幅度必须小于一个因子(值为4)。如果要调整的幅度大于4倍,则按4倍调整。由于在下一个2,016区块的周期不平衡的情况会继续存在,所以进一步的难度调整会在下一周期进行。因此平衡哈希计算能力和难度的巨大差异有可能需要花费几个2,016区块周期才会完成。

举个例子,当前A节点在挖277,316个区块,A挖矿节点一旦完成计算,立刻将这个区块发给它的所有相邻节点。这些节点在接收并验证这个新区块后,也会继续传播此区块。当这个新区块在网络中扩散时,每个节点都会将它作为第277,316个区块(父区块为277,315)加到自身节点的区块链副本中。当挖矿节点收到并验证了这个新区块后,它们会放弃之前对构建这个相同高度区块的计算,并立即开始计算区块链中下一个区块的工作。

比特币共识机制的第三步是通过网络中的每个节点独立校验每个新区块。当新区块在网络中传播时,每一个节点在将它转发到其节点之前,会进行一系列的测试去验证它。这确保了只有有效的区块会在网络中传播。

每一个节点对每一个新区块的独立校验,确保了矿工无法欺诈。在前面的章节中,我们看到了矿工们如何去记录一笔交易,以获得在此区块中创造的新比特币和交易费。为什么矿工不为他们自己记录一笔交易去获得数以千计的比特币?这是因为每一个节点根据相同的规则对区块进行校验。一个无效的coinbase交易将使整个区块无效,这将导致该区块被拒绝,因此,该交易就不会成为总账的一部分。

比特币去中心化的共识机制的最后一步是将区块集合至有最大工作量证明的链中。一旦一个节点验证了一个新的区块,它将尝试将新的区块连接到到现存的区块链,将它们组装起来。

节点维护三种区块:

· 第一种是连接到主链上的,

· 第二种是从主链上产生分支的(备用链),

· 第三种是在已知链中没有找到已知父区块的。

有时候,新区块所延长的区块链并不是主链,这一点我们将在下面“ 区块链分叉”中看到。

如果节点收到了一个有效的区块,而在现有的区块链中却未找到它的父区块,那么这个区块被认为是“孤块”。孤块会被保存在孤块池中,直到它们的父区块被节点收到。一旦收到了父区块并且将其连接到现有区块链上,节点就会将孤块从孤块池中取出,并且连接到它的父区块,让它作为区块链的一部分。当两个区块在很短的时间间隔内被挖出来,节点有可能会以相反的顺序接收到它们,这个时候孤块现象就会出现。

选择了最大难度的区块链后,所有的节点最终在全网范围内达成共识。随着更多的工作量证明被添加到链中,链的暂时性差异最终会得到解决。挖矿节点通过“投票”来选择它们想要延长的区块链,当它们挖出一个新块并且延长了一个链,新块本身就代表它们的投票。

因为区块链是去中心化的数据结构,所以不同副本之间不能总是保持一致。区块有可能在不同时间到达不同节点,导致节点有不同的区块链视角。解决的办法是, 每一个节点总是选择并尝试延长代表累计了最大工作量证明的区块链,也就是最长的或最大累计难度的链。

当有两个候选区块同时想要延长最长区块链时,分叉事件就会发生。正常情况下,分叉发生在两名矿工在较短的时间内,各自都算得了工作量证明解的时候。两个矿工在各自的候选区块一发现解,便立即传播自己的“获胜”区块到网络中,先是传播给邻近的节点而后传播到整个网络。每个收到有效区块的节点都会将其并入并延长区块链。如果该节点在随后又收到了另一个候选区块,而这个区块又拥有同样父区块,那么节点会将这个区块连接到候选链上。其结果是,一些节点收到了一个候选区块,而另一些节点收到了另一个候选区块,这时两个不同版本的区块链就出现了。

分叉之前

分叉开始

我们看到两个矿工几乎同时挖到了两个不同的区块。为了便于跟踪这个分叉事件,我们设定有一个被标记为红色的、来自加拿大的区块,还有一个被标记为绿色的、来自澳大利亚的区块。

假设有这样一种情况,一个在加拿大的矿工发现了“红色”区块的工作量证明解,在“蓝色”的父区块上延长了块链。几乎同一时刻,一个澳大利亚的矿工找到了“绿色”区块的解,也延长了“蓝色”区块。那么现在我们就有了两个区块:一个是源于加拿大的“红色”区块;另一个是源于澳大利亚的“绿色”。这两个区块都是有效的,均包含有效的工作量证明解并延长同一个父区块。这个两个区块可能包含了几乎相同的交易,只是在交易的排序上有些许不同。

比特币网络中邻近(网络拓扑上的邻近,而非地理上的)加拿大的节点会首先收到“红色”区块,并建立一个最大累计难度的区块,“红色”区块为这个链的最后一个区块(蓝色-红色),同时忽略晚一些到达的“绿色”区块。相比之下,离澳大利亚更近的节点会判定“绿色”区块胜出,并以它为最后一个区块来延长区块链(蓝色-绿色),忽略晚几秒到达的“红色”区块。那些首先收到“红色”区块的节点,会即刻以这个区块为父区块来产生新的候选区块,并尝试寻找这个候选区块的工作量证明解。同样地,接受“绿色”区块的节点会以这个区块为链的顶点开始生成新块,延长这个链。

分叉问题几乎总是在一个区块内就被解决了。网络中的一部分算力专注于“红色”区块为父区块,在其之上建立新的区块;另一部分算力则专注在“绿色”区块上。即便算力在这两个阵营中平均分配,也总有一个阵营抢在另一个阵营前发现工作量证明解并将其传播出去。在这个例子中我们可以打个比方,假如工作在“绿色”区块上的矿工找到了一个“粉色”区块延长了区块链(蓝色-绿色-粉色),他们会立刻传播这个新区块,整个网络会都会认为这个区块是有效的,如上图所示。

所有在上一轮选择“绿色”区块为胜出者的节点会直接将这条链延长一个区块。然而,那些选择“红色”区块为胜出者的节点现在会看到两个链: “蓝色-绿色-粉色”和“蓝色-红色”。 如上图所示,这些节点会根据结果将 “蓝色-绿色-粉色” 这条链设置为主链,将 “蓝色-红色” 这条链设置为备用链。 这些节点接纳了新的更长的链,被迫改变了原有对区块链的观点,这就叫做链的重新共识 。因为“红”区块做为父区块已经不在最长链上,导致了他们的候选区块已经成为了“孤块”,所以现在任何原本想要在“蓝色-红色”链上延长区块链的矿工都会停下来。全网将 “蓝色-绿色-粉色” 这条链识别为主链,“粉色”区块为这条链的最后一个区块。全部矿工立刻将他们产生的候选区块的父区块切换为“粉色”,来延长“蓝色-绿色-粉色”这条链。

从理论上来说,两个区块的分叉是有可能的,这种情况发生在因先前分叉而相互对立起来的矿工,又几乎同时发现了两个不同区块的解。然而,这种情况发生的几率是很低的。单区块分叉每周都会发生,而双块分叉则非常罕见。

比特币将区块间隔设计为10分钟,是在更快速的交易确认和更低的分叉概率间作出的妥协。更短的区块产生间隔会让交易清算更快地完成,也会导致更加频繁地区块链分叉。与之相对地,更长的间隔会减少分叉数量,却会导致更长的清算时间。

区块链网络拥堵怎么办

1

什么是网络拥堵

通常指的是一种网络故障现象:某办公局域网计算机使用一个带路由功能的ADSL Modem+HUB共享上网。当同一时间上网人数较少的时候网络比较通畅,上网人数多了以后网络会时断时通,并且HUB的Collision指示灯会闪烁不停。

而在区块链的应用程序中,无论是数字货币、智能合约、去中心的交易系统等,它们的网络都是由一个个独立的节点组成的,发生在节点中的各种操作,比如转账交易、合约状态的变更等,都会以交易事务的数据形式广播到网络中,通过矿工打包到新的区块,作为主链的一部分而最终确认所有的这些操作。

当节点很多,使用量很多的时候,大量发生的交易就会来不及在正常期望的时间内被打包,因为它们都拥堵在网络中,这些等待的被确认的交易数据通常会维持在节点的内存池中。这个就是区块链的拥堵。

2

网络拥堵是怎么发生的

目前比特币区块大小为1M,每秒大约只能处理7个交易。随着交易量不断增长,比特币网络已经难以迅速地进行转账交易确认,区块链网络时常出现拥堵。

区块链网络上最高时有上万笔交易积压,某些转账交易手续费高达几十美元,网络拥堵时,交易甚至需要花费好几天才能被打包。

实际上对于每一类区块链应用来说,这个问题都是存在的,造成不断有用户抱怨交易延迟的问题,但也侧面证明了应用的广泛,以及用户体量的增加。

那么发生这些问题,我们应该怎么办呢?

3

网络拥堵怎么解决

解决的方法,无非有如下几种。

第一种 扩容,提高处理能力。

第二种 截流,限制区块链包的数量。

通过将上述两种方法进行综合。

悉尼大学研究者研发了一种新型的区块链系统,在100台机器中能够实现每秒44万笔交易的吞吐量,而Visa每秒的交易处理器是5.6万笔。相比之下,比特币每秒的交易限制在7笔,以太坊区块链则为20笔。

JadeChain公链系统上线后,将彻底解决JADE生态应用中的网络拥堵问题。

什么是区块链扩容?

普通用户能够运行节点对于区块链的去中心化至关重要

想象一下凌晨两点多,你接到了一个紧急呼叫,来自世界另一端帮你运行矿池 (质押池) 的人。从大约 14 分钟前开始,你的池子和其他几个人从链中分离了出来,而网络仍然维持着 79% 的算力。根据你的节点,多数链的区块是无效的。这时出现了余额错误:区块似乎错误地将 450 万枚额外代币分配给了一个未知地址。

一小时后,你和其他两个同样遭遇意外的小矿池参与者、一些区块浏览器和交易所方在一个聊天室中,看见有人贴出了一条推特的链接,开头写着“宣布新的链上可持续协议开发基金”。

到了早上,相关讨论广泛散布在推特以及一个不审查内容的社区论坛上。但那时 450 万枚代币中的很大一部分已经在链上转换为其他资产,并且进行了数十亿美元的 defi 交易。79%的共识节点,以及所有主要的区块链浏览器和轻钱包的端点都遵循了这条新链。也许新的开发者基金将为某些开发提供资金,或者也许所有这些都被领先的矿池、交易所及其裙带所吞并。但是无论结果如何,该基金实际上都成为了既成事实,普通用户无法反抗。

或许还有这么一部主题电影。或许会由 MolochDAO 或其他组织进行资助。

这种情形会发生在你的区块链中吗?你所在区块链社区的精英,包括矿池、区块浏览器和托管节点,可能协调得很好,他们很可能都在同一个 telegram 频道和微信群中。如果他们真的想出于利益突然对协议规则进行修改,那么他们可能具备这种能力。以太坊区块链在十小时内完全解决了共识失败,如果是只有一个客户端实现的区块链,并且只需要将代码更改部署到几十个节点,那么可以更快地协调客户端代码的更改。能够抵御这种社会性协作攻击的唯一可靠方式是“被动防御”,而这种力量来自去一个中心化的群体:用户。

想象一下,如果用户运行区块链的验证节点 (无论是直接验证还是其他间接技术),并自动拒绝违反协议规则的区块,即使超过 90% 的矿工或质押者支持这些区块,故事会如何发展。

如果每个用户都运行一个验证节点,那么攻击很快就会失败:有些矿池和交易所会进行分叉,并且在整个过程中看起来很愚蠢。但是即使只有一些用户运行验证节点,攻击者也无法大获全胜。相反,攻击会导致混乱,不同用户会看到不同的区块链版本。最坏情况下,随之而来的市场恐慌和可能持续的链分叉将大幅减少攻击者的利润。对如此旷日持久的冲突进行应对的想法本身就可以阻止大多数攻击。

Hasu 关于这一点的看法:

“我们要明确一件事,我们之所以能够抵御恶意的协议更改,是因为拥有用户验证区块链的文化,而不是因为 PoW 或 PoS。”

假设你的社区有 37 个节点运行者,以及 80000 名被动监听者,对签名和区块头进行检查,那么攻击者就获胜了。如果每个人都运行节点的话,攻击者就会失败。我们不清楚针对协同攻击的启动群体免疫的确切阈值是多少,但有一点是绝对清楚的:好的节点越多,恶意的节点就越少,而且我们所需的数量肯定不止于几百几千个。

那么全节点工作的上限是什么?

为了使得有尽可能多的用户能够运行全节点,我们会将注意力集中在普通消费级硬件上。即使能够轻松购买到专用硬件,这能够降低一些全节点的门槛,但事实上对可扩展性的提升并不如我们想象的那般。

全节点处理大量交易的能力主要受限于三个方面:

算力:在保证安全的前提下,我们能划分多少 CPU 来运行节点?

带宽:基于当前的网络连接,一个区块能包含多少字节?

存储:我们能要求用户使用多大的空间来进行存储?此外,其读取速度应该达到多少?(即,HDD 足够吗?还是说我们需要 SSD?)

许多使用“简单”技术对区块链进行大幅扩容的错误看法都源自于对这些数字过于乐观的估计。我们可以依次来讨论这三个因素:

算力

错误答案:100% 的 CPU 应该用于区块验证

正确答案:约 5-10% 的 CPU 可以用于区块验证

限制之所以这么低的四个主要原因如下:

我们需要一个安全边界来覆盖 DoS 攻击的可能性 (攻击者利用代码弱点制造的交易需要比常规交易更长的处理时间)

节点需要在离线之后能够与区块链同步。如果我掉线一分钟,那我应该要能够在几秒钟之内完成同步

运行节点不应该很快地耗尽电池,也不应该拖慢其他应用的运行速度

节点也有其他非区块生产的工作要进行,大多数是验证以及对 p2p 网络中输入的交易和请求做出响应

请注意,直到最近大多数针对“为什么只需要 5-10%?”这一点的解释都侧重于另一个不同的问题:因为 PoW 出块时间不定,验证区块需要很长时间,会增加同时创建多个区块的风险。这个问题有很多修复方法,例如 Bitcoin NG,或使用 PoS 权益证明。但这些并没有解决其他四个问题,因此它们并没有如许多人所料在可扩展性方面获得巨大进展。

并行性也不是灵丹妙药。通常,即使是看似单线程区块链的客户端也已经并行化了:签名可以由一个线程验证,而执行由其他线程完成,并且有一个单独的线程在后台处理交易池逻辑。而且所有线程的使用率越接近 100%,运行节点的能源消耗就越多,针对 DoS 的安全系数就越低。

带宽

错误答案:如果没 2-3 秒都产生 10 MB 的区块,那么大多数用户的网络都大于 10 MB/秒,他们当然都能处理这些区块

正确答案:或许我们能在每 12 秒处理 1-5 MB 的区块,但这依然很难

如今,我们经常听到关于互联网连接可以提供多少带宽的广为传播的统计数据:100 Mbps 甚至 1 Gbps 的数字很常见。但是由于以下几个原因,宣称的带宽与预期实际带宽之间存在很大差异:

“Mbps”是指“每秒数百万 bits”;一个 bit 是一个字节的 1/8,因此我们需要将宣称的 bit 数除以 8 以获得字节数。

网络运营商,就像其他公司一样,经常编造谎言。

总是有多个应用使用同一个网络连接,所以节点无法独占整个带宽。

P2P 网络不可避免地会引入开销:节点通常最终会多次下载和重新上传同一个块 (更不用说交易在被打包进区块之前还要通过 mempool 进行广播)。

当 Starkware 在 2019 年进行一项实验时,他们在交易数据 gas 成本降低后首次发布了 500 kB 的区块,一些节点实际上无法处理这种大小的区块。处理大区块的能力已经并将持续得到改善。但是无论我们做什么,我们仍然无法获取以 MB/秒为单位的平均带宽,说服自己我们可以接受 1 秒的延迟,并且有能力处理那种大小的区块。

存储

错误答案:10 TB

正确答案:512 GB

正如大家可能猜到的,这里的主要论点与其他地方相同:理论与实践之间的差异。理论上,我们可以在亚马逊上购买 8 TB 固态驱动 (确实需要 SSD 或 NVME;HDD 对于区块链状态存储来说太慢了)。实际上,我用来写这篇博文的笔记本电脑有 512 GB,如果你让人们去购买硬件,许多人就会变得懒惰 (或者他们无法负担 800 美元的 8 TB SSD) 并使用中心化服务。即使可以将区块链装到某个存储设备上,大量活动也可以快速地耗尽磁盘并迫使你购入新磁盘。

一群区块链协议研究员对每个人的磁盘空间进行了调查。我知道样本量很小,但仍然...

请点击输入图片描述

此外,存储大小决定了新节点能够上线并开始参与网络所需的时间。现有节点必须存储的任何数据都是新节点必须下载的数据。这个初始同步时间 (和带宽) 也是用户能够运行节点的主要障碍。在写这篇博文时,同步一个新的 geth 节点花了我大约 15 个小时。如果以太坊的使用量增加 10 倍,那么同步一个新的 geth 节点将至少需要一周时间,而且更有可能导致节点的互联网连接受到限制。这在攻击期间更为重要,当用户之前未运行节点时对攻击做出成功响应需要用户启用新节点。

交互效应

此外,这三类成本之间存在交互效应。由于数据库在内部使用树结构来存储和检索数据,因此从数据库中获取数据的成本随着数据库大小的对数而增加。事实上,因为顶级 (或前几级) 可以缓存在 RAM 中,所以磁盘访问成本与数据库大小成正比,是 RAM 中缓存数据大小的倍数。

不要从字面上理解这个图,不同的数据库以不同的方式工作,通常内存中的部分只是一个单独 (但很大) 的层 (参见 leveldb 中使用的 LSM 树)。但基本原理是一样的。

例如,如果缓存为 4 GB,并且我们假设数据库的每一层比上一层大 4 倍,那么以太坊当前的 ~64 GB 状态将需要 ~2 次访问。但是如果状态大小增加 4 倍到 ~256 GB,那么这将增加到 ~3 次访问。因此,gas 上限增加 4 倍实际上可以转化为区块验证时间增加约 6 倍。这种影响可能会更大:硬盘在已满状态下比空闲时需要花更长时间来读写。

这对以太坊来说意味着什么?

现在在以太坊区块链中,运行一个节点对许多用户来说已经是一项挑战,尽管至少使用常规硬件仍然是可能的 (我写这篇文章时刚刚在我的笔记本电脑上同步了一个节点!)。因此,我们即将遭遇瓶颈。核心开发者最关心的问题是存储大小。因此,目前在解决计算和数据瓶颈方面的巨大努力,甚至对共识算法的改变,都不太可能带来 gas limit 的大幅提升。即使解决了以太坊最大的 DoS 弱点,也只能将 gas limit 提高 20%。

对于存储大小的问题,唯一解决方案是无状态和状态逾期。无状态使得节点群能够在不维护永久存储的情况下进行验证。状态逾期会使最近未访问过的状态失活,用户需要手动提供证明来更新。这两条路径已经研究了很长时间,并且已经开始了关于无状态的概念验证实现。这两项改进相结合可以大大缓解这些担忧,并为显著提升 gas limit 开辟空间。但即使在实施无状态和状态逾期之后,gas limit 也可能只会安全地提升约 3 倍,直到其他限制开始发挥作用。

另一个可能的中期解决方案使使用 ZK-SNARKs 来验证交易。ZK-SNARKs 能够保证普通用户无需个人存储状态或是验证区块,即使他们仍然需要下载区块中的所有数据来抵御数据不可用攻击。另外,即使攻击者不能强行提交无效区块,但是如果运行一个共识节点的难度过高,依然会有协调审查攻击的风险。因此,ZK-SNARKs 不能无限地提升节点能力,但是仍然能够对其进行大幅提升 (或许是 1-2 个数量级)。一些区块链在 layer1 上探索该形式,以太坊则通过 layer2 协议 (也叫 ZK rollups) 来获益,例如 zksync, Loopring 和 Starknet。

分片之后又会如何?

分片从根本上解决了上述限制,因为它将区块链上包含的数据与单个节点需要处理和存储的数据解耦了。节点验证区块不是通过亲自下载和执行,而是使用先进的数学和密码学技术来间接验证区块。

因此,分片区块链可以安全地拥有非分片区块链无法实现的非常高水平的吞吐量。这确实需要大量的密码学技术来有效替代朴素完整验证,以拒绝无效区块,但这是可以做到的:该理论已经具备了基础,并且基于草案规范的概念验证已经在进行中。

以太坊计划采用二次方分片 (quadratic sharding),其中总可扩展性受到以下事实的限制:节点必须能够同时处理单个分片和信标链,而信标链必须为每个分片执行一些固定的管理工作。如果分片太大,节点就不能再处理单个分片,如果分片太多,节点就不能再处理信标链。这两个约束的乘积构成了上限。

可以想象,通过三次方分片甚至指数分片,我们可以走得更远。在这样的设计中,数据可用性采样肯定会变得更加复杂,但这是可以实现的。但以太坊并没有超越二次方,原因在于,从交易分片到交易分片的分片所获得的额外可扩展性收益实际上无法在其他风险程度可接受的前提下实现。

那么这些风险是什么呢?

最低用户数量

可以想象,只要有一个用户愿意参与,非分片区块链就可以运行。但分片区块链并非如此:单个节点无法处理整条链,因此需要足够的节点以共同处理区块链。如果每个节点可以处理 50 TPS,而链可以处理 10000 TPS,那么链至少需要 200 个节点才能存续。如果链在任何时候都少于 200 个节点,那可能会出现节点无法再保持同步,或者节点停止检测无效区块,或者还可能会发生许多其他坏事,具体取决于节点软件的设置。

在实践中,由于需要冗余 (包括数据可用性采样),安全的最低数量比简单的“链 TPS 除以节点 TPS”高几倍,对于上面的例子,我们将其设置位 1000 个节点。

如果分片区块链的容量增加 10 倍,则最低用户数也增加 10 倍。现在大家可能会问:为什么我们不从较低的容量开始,当用户很多时再增加,因为这是我们的实际需要,用户数量回落再降低容量?

这里有几个问题:

区块链本身无法可靠地检测到其上有多少唯一用户,因此需要某种治理来检测和设置分片数量。对容量限制的治理很容易成为分裂和冲突的根源。

如果许多用户突然同时意外掉线怎么办?

增加启动分叉所需的最低用户数量,使得防御恶意控制更加艰难。

最低用户数为 1,000,这几乎可以说是没问题的。另一方面,最低用户数设为 100 万,这肯定是不行。即使最低用户数为 10,000 也可以说开始变得有风险。因此,似乎很难证明超过几百个分片的分片区块链是合理的。

历史可检索性

用户真正珍视的区块链重要属性是永久性。当公司破产或是维护该生态系统不再产生利益时,存储在服务器上的数字资产将在 10 年内不再存在。而以太坊上的 NFT 是永久的。

是的,到 2372 年人们仍能够下载并查阅你的加密猫。

但是一旦区块链的容量过高,存储所有这些数据就会变得更加困难,直到某时出现巨大风险,某些历史数据最终将……没人存储。

要量化这种风险很容易。以区块链的数据容量 (MB/sec) 为单位,乘以 ~30 得到每年存储的数据量 (TB)。当前的分片计划的数据容量约为 1.3 MB/秒,因此约为 40 TB/年。如果增加 10 倍,则为 400 TB/年。如果我们不仅希望可以访问数据,而且是以一种便捷的方式,我们还需要元数据 (例如解压缩汇总交易),因此每年达到 4 PB,或十年后达到 40 PB。Internet Archive (互联网档案馆) 使用 50 PB。所以这可以说是分片区块链的安全大小上限。

因此,看起来在这两个维度上,以太坊分片设计实际上已经非常接近合理的最大安全值。常数可以增加一点,但不能增加太多。

结语

尝试扩容区块链的方法有两种:基础的技术改进和简单地提升参数。首先,提升参数听起来很有吸引力:如果您是在餐纸上进行数学运算,这就很容易让自己相信消费级笔记本电脑每秒可以处理数千笔交易,不需要 ZK-SNARK、rollups 或分片。不幸的是,有很多微妙的理由可以解释为什么这种方法是有根本缺陷的。

运行区块链节点的计算机无法使用 100%的 CPU 来验证区块链;他们需要很大的安全边际来抵抗意外的 DoS 攻击,他们需要备用容量来执行诸如在内存池中处理交易之类的任务,并且用户不希望在计算机上运行节点的时候无法同时用于任何其他应用。带宽也会受限:10 MB/s 的连接并不意味着每秒可以处理 10 MB 的区块!也许每 12 秒才能处理 1-5 MB 的块。存储也是一样,提高运行节点的硬件要求并且限制专门的节点运行者并不是解决方案。对于去中心化的区块链而言,普通用户能够运行节点并形成一种文化,即运行节点是一种普遍行为,这一点至关重要。

区块链内存池的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于区块链流动性池、区块链内存池的信息别忘了在本站进行查找喔。

标签: #区块链内存池

  • 评论列表

留言评论