今天给大家聊到了拜占庭区块链,以及区块链的定义中,拜占庭几轮投票相关的内容,在此希望可以让网友有所了解,最后记得收藏本站。
区块链笔记——PBFT
PBFT是实用拜占庭容错拜占庭区块链的简称拜占庭区块链,是解决拜占庭将军问题的一种方案。比起最开始的BFT算法,PBFT额外要求网络封闭,即节点数目确定并提前互通,但将复杂度从指数级降低到多项式级,使得BFT系列算法真正具有可行性。
与POW、POS等大家耳熟能详的共识不同,BFT系列的共识不需要“Proof”,亦即不需要节点投入算力或其他资源来确权,因此不需要代币激励便可完成共识。缺点是原始的BFT效率太低,只能存在于理论而无法应用。而改进的PBFT虽然效率大大提高,却对节点数量和状态提出拜占庭区块链了要求,导致合格的记帐节点太少,并且也只能维持在少数,过多的节点会拖慢网络速度。因此PBFT更多是用在联盟链和私链上。公链也有应用,例如NEO,便是采用了PBFT算法。
拜占庭将军问题的实质是在恶劣的通讯环境中,如何使各参与方达成一致意见。POW和POS等共识要求参与方投入成本,争夺唯一的发言权。在某一段时间内只有唯一的发言人,自然只会有一个意见,从而达成共识。PBFT采取不同的思路,要求各参与方相互发送及验证彼此的信息,最终采用多数原则达成共识。
PBFT能够以一种低成本的方式实现节点间共识,其理念其实相当贴近拜占庭区块链我们的生活习惯。例如在老师布置作业后,同学们总要互相问问确认一下,才放心地把今天的作业记到本子上。当然实现上还有很多细节,保证各节点的平等关系。在节点数目不多的时候,节点之间实现相互通信的成本并不高,节点之间可以快速发送确认。但节点数目增长却会带来整体性能的下降。PBFT可以容忍的坏节点数量不多于总数的三分之一,如果节点损坏率比较固定,提高总节点数量虽然能使系统获得更好的冗余,却会大大增加通讯量,造成效率下降。加上PBFT没有激励机制,其适合联盟链和私链场景。作为公链不可避免地节点数量太少,分布过分集中,例如NEO只有七个节点。
PBFT要求坏节点数量f=(n-1)/3,这里n是总节点数。只要f满足这个条件,共识总是可以达成。为什么f要满足这个条件拜占庭区块链?简单来说,假设网络中存在恶意节点联盟,其控制了数量为f的节点,这些节点可以故意发布错误的信息。此时网络中正常节点数量为n-f个。将这n-f个节点分为两部分,各自包含一部分节点。对于任一部分正常节点来说,只要恶意节点数f大于自身节点数,同时大于剩余的正常节点数,这部分正常节点便会与恶意节点联盟达成共识。此时只要恶意节点联盟先后向两部分正常节点发送不同的共识信息,便可造成网络分叉。因此要保证网络运行,对于每一部分正常节点来说,网络中恶意节点数量不能同时大于自身节点数和网络剩余正常节点数。代入计算便得到f=(n-1)/3。
拜占庭容错和PBFT共识算法
实用拜占庭区块链的拜占庭容错算法
BFT 是区块链共识算法中拜占庭区块链,需要解决拜占庭区块链的一个核心问题。比特币的POW,eos的dpos,以及共识算法pos,这些公链算法,解决的是共识节点众多情况下的bft问题。
拜占庭将军问题。也称为拜占庭容错。
用来描述分布式系统一致性问题。
背景如下:
拜占庭帝国想要进攻一个强大的敌人,为此派出了10支军队去包围这个敌人。这个敌人虽不比拜占庭帝国,但也足以抵御5支常规拜占庭军队的同时袭击。这10支军队在分开的包围状态下同时攻击。拜占庭区块链他们任一支军队单独进攻都毫无胜算,除非有至少6支军队(一半以上)同时袭击才能攻下敌国。他们分散在敌国的四周,依靠通信兵骑马相互通信来协商进攻意向及进攻时间。困扰这些将军的问题是,他们不确定他们中是否有叛徒,叛徒可能擅自变更进攻意向或者进攻时间。在这种状态下,拜占庭将军们才能保证有多于6支军队在同一时间一起发起进攻,从而赢取战斗?
单从上面的说明可能无法理解这个问题的复杂性,我们来简单分析一下:
先看在没有叛徒情况下,假如一个将军A提一个进攻提议(如:明日下午1点进攻,你愿意加入吗?)由通信兵通信分别告诉其他的将军,如果幸运中的幸运,他收到了其他6位将军以上的同意,发起进攻。如果不幸,其他的将军也在此时发出不同的进攻提议(如:明日下午2点、3点进攻,你愿意加入吗?),由于时间上的差异,不同的将军收到(并认可)的进攻提议可能是不一样的,这是可能出现A提议有3个支持者,B提议有4个支持者,C提议有2个支持者等等。
再加一点复杂性,在有叛徒情况下,一个叛徒会向不同的将军发出不同的进攻提议(通知A明日下午1点进攻, 通知B明日下午2点进攻等等),一个叛徒也会可能同意多个进攻提议(即同意下午1点进攻又同意下午2点进攻)。
叛徒发送前后不一致的进攻提议,被称为“拜占庭错误”,而能够处理拜占庭错误的这种容错性称为「Byzantine fault tolerance」,简称为BFT。
使用密码学算法保证节点之间的消息传送是不可篡改的, 通过下面的算法我们可以保证A将军收到B将军发来的消息确实是B将军本人的真实请求 。
我们采用的是哈希函数(散列算法)SHA256 -- 从数据(byte)值中创建独一无二的hash值,并压缩成摘要,将数据格式固定下来。通过这个摘要与个人私钥生成Digital Signature 和个人公钥Public-key certificate,接收方验证签名和摘要,如果是通过验证,即证明摘要内容没有经过篡改。
pbft容忍无效或者恶意节点数量 e 。为了保证整个系统可以正常运作,需要有2f+1个正常节点,系统的总结点数为 :3f+1。即pbft算法容忍小于1/3的恶意或者无效节点。 原因见节点作恶的极端情况
pbft是一种状态机副本复制算法,所有副本在一个view轮换过程中操作,哪些是主节点(进攻的提议者的大将军们,轮流当)通过view中其他节点(其他将军)赋予的编号和节点数集合来确定,即:主节点p=v mod |R| 。 v:view编号,|R|节点个数,p:主节点编号。 关于状态机复制算法、view change的意义(主要是防止主节点作恶),主节点详见论文。
基于拜占庭将军问题,PBFT算法一致性的确保主要分为这三个阶段:预准备(pre-prepare)、准备(prepare)和确认(commit)。流程如下图所示:
[图片上传失败...(image-e3329d-1562488133052)]
首先解释一下上面各个符号表达的意思:
下面结合上图,详细说一下PBFT的步骤:
根据上述流程,在 N ≥ 3F + 1 的情况下一致性是可能解决, N为总计算机数,F为有问题的计算机总数 。
下面所有的校验流程略去对消息内容、签名和身份的验证,即已经保证了节点之间消息传播是不可篡改的
上述算法中,比较重要的一个点是view change,为了能恢复之前的请求,每一个副本节点收到消息之后或者发送消息的时候都会记录消息到本地的log记录中。当执行请求后,副本节点需要把之前该请求的记录消息清除掉。最简单的做法是在reply消息后,在执行一次当前状态的共识同步,但是为了节省资源,一般在多条请求K后执行一次状态同步。这个状态同步就是checkpoint消息。
为了节省内存,系统需要一种将日志中的 无异议消息记录 删除的机制。为了保证系统的安全性,副本节点在删除自己的消息日志前,需要确保至少 f+1 个正常副本节点执行了消息对应的请求,并且可以在视图变更时向其他副本节点证明。另外,如果一些副本节点错过部分消息,但是这些消息已经被所有正常副本节点删除了,这就需要通过 传输部分或者全部服务状态实现该副本节点的同步 。因此,副本节点同样需要证明状态的正确性。
在每一个操作执行后都生成这样的证明是非常消耗资源的。因此,证明过程只有在请求序号可以被某个常数(比如100)整除的时候才会周期性地进行。我们将这些请求执行后得到的状态称作 检查点(checkpoint) ,并且将具有证明的检查点称作 稳定检查点(stable checkpoint) 。
上述情况是理想情况,实际上当副本节点i向其他节点发出checkpoint消息之后,其他节点还没有完成K条请求的相互共识,所以不会立即对i的请求作出响应。其他节点会按照自己的处理步骤和顺序,向前行进和共识。但是此时i发出的checkpoint没有形成stable,为了防止i太快,超过自己太多,于是被便会设置一个高水位H=h+L,其中L就是我们指定允许的高度差,等于checkpoint周期处理数K的整数倍,可以设置为L=2K。当副本节点i处理请求超过高水位H时,副本节点即使接受到请求也会视为非法请求。等待stable checkpoint发生变化,再继续向前推进处理。
如果主节点作恶,它可能会给不同的请求编上相同的序号,或者不去分配序号,或者让相邻请求的序号不连续。备份节点(备份主节点)应当有职责来主动检查这些序号的合法性。如果主节点掉线或者作恶不广播客户端的请求,客户端设置超时机制,超时的话,向所有副本节点广播请求消息。副本节点检测出主节点或者下线,发起view change流程。
我们在上面讲到,当网络中有F台有问题的计算机时,至少需要3F+1台计算机才能保证一致性问题的解决,我们在这里讨论一下原因。
我们可以考虑:由于有F个节点为故障或被攻击的节点,故我们只能从N-F个节点中进行判断。但是由于异步传输,故当收到N-F个消息后,并不能确定后面是否有新的消息。(有可能是目前收到的N-F个节点的消息中存在被攻击的节点发来的消息,而好的节点的消息由于异步传输还没有被收到。)
我们考虑最坏的情况,即剩下F个都是好的节点,收到的中有F个被攻击的节点,故我们需要使得收到的中好节点的数量 (N-F)-F 大于被攻击节点的数量 F ,于是有 N-2FF ,即 N3F ,所以N的最小整数为 N=3F+1 。
pbft是需要参与认证的节点进行的。所以一个完整的共识算法包括DPOS+PBFT。其速度是可以达到1500tps左右的。
参考文献:
Practical Byzantine Fault Tolerance
Miguel Castro and Barbara Liskov Laboratory for Computer Science, Massachusetts Institute of Technology, 545 Technology Square, Cambridge, MA 02139 castro,liskov @lcs .mit.edu
部分论文翻译
区块链的技术原理是什么?
区块链技术涉及的关键点包括:去中心化(Decentralized)、去信任(Trustless)、集体维护(Collectivelymaintain)、可靠数据库(ReliableDatabase)、时间戳(Timestamp)、非对称加密(AsymmetricCryptography)等。
区块链技术重新定义了网络中信用的生成方式:在系统中,参与者无需了解其他人的背景资料,也不需要借助第三方机构的担保或保证,区块链技术保障了系统对价值转移的活动进行记录、传输、存储,其最后的结果一定是可信的。
扩展资料
区块链技术原理的来源可归纳为一个数学问题:拜占庭将军问题。拜占庭将军问题延伸到互联网生活中来,其内涵可概括为:在互联网大背景下,当需要与不熟悉的对手方进行价值交换活动时,人们如何才能防止不会被其中的恶意破坏者欺骗、迷惑从而做出错误的决策。
进一步将拜占庭将军问题延伸到技术领域中来,其内涵可概括为:在缺少可信任的中央节点和可信任的通道的情况下,分布在网络中的各个节点应如何达成共识。区块链技术解决了闻名已久的拜占庭将军问题——它提供了一种无需信任单个节点、还能创建共识网络的方法。
参考资料来源:百度百科-区块链
关于拜占庭区块链和区块链的定义中,拜占庭几轮投票的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。
标签: #拜占庭区块链
评论列表