今天给大家聊到了区块链阻断,以及区块链解决的问题相关的内容,在此希望可以让网友有所了解,最后记得收藏本站。
跨界电子商务支付模式的不足
近年来区块链阻断,人们跨界交易需求区块链阻断的增长对电子商务支付平台的发展起到了积极的促进作用。为了获取更多的经济效益,部分电子商务支付平台开始在拓展境内支付的同时,将跨界交易作为一项拓展目标。在这一背景中,对于电子商务支付平台而言,如何通过制定跨界电子商务支付优化模式以保障支付安全是其发展面临的主要问题。
一、跨界电子商务支付模式的不足
跨界电子商务支付模式中的不足主要包含以下几种区块链阻断:
(一)支付安全
近年来,随着第三方支付平台的逐渐发展,支付业务变得越来越成熟。但境内支付业务的安全仍面临着诸多威胁,具体体现在以下几方面:第一,跨界支付市场方面。与境内支付市场相比,境外支付市场上停留在初级发展阶段,并未形成完善的市场体系,这一状况对跨界支付系统的防御功能产生了一定的干扰。第二,第三方支付机构方面。在跨界电子商务支付模式中,第三方支付机构中储备着海量资金信息、消费者身份信息,而第三方支付机构的主体以小型企业为主,其在支付网络防御方面不具备优势,当国际网络或不法分子供给跨界支付系统时,很容易引发资金受损、消费者信息泄露等问题[1].
(二)跨界电子商务管理
跨界电子商务管理的不足主要与跨界电子商务支付模式的特殊性有关。与传统支付模式相比,跨界支付模式具有虚拟化、无纸化特征。而跨界电子商务管理工作多建立在纸质交易记录的基础上,这种状况不利于管理工作的开展,导致消费者身份信息及资金信息的安全管理效果欠佳,严重者甚至影响电子商务企业的发展。
二、基于区块链金融的跨界电子商务支付优化模式
区块链金融的出现为跨界电子商务支付模式的变更提供了新的方向。在区块链金融基础上,跨界电子商务支付模式可行的优化策略主要包含以下几种:
(一)跨界支付流程简化策略
跨界电子商务支付模式优化的目的为:通过对支付模式的调整保障跨界支付的安全性。从概率统计角度来讲,跨界支付流程中的环节数量与支付安全呈负相关关系。因此,跨界电子商务支付优化模式可将支付流程简化作为基本目标,进而确保跨界交易的安全完成。
传统跨界商务支付模式主要包含商品结算、用户支付、商品物流传输等。其中,每个环节中的交易流程均需要耗费较长时间,且其安全性有待商榷。引入区块链技术后,基于区块链技术的跨界支付系统可直接对商品结算中的用户身份提取、商品质量验证、商品质量验证等进行智能分析,自动完成一系列验证过程,并生成支付指令,为用户的支付提供可靠的技术支持。经简化的跨界支付流程大大缩小了支付流程中出现信息被盗、资金受损等风险,并提高跨界支付效率,促进企业经营成本的降低。
例如,某跨界支付平台于2016年正式引入区块链技术,构建跨界支付自动化系统。2017年的统计结果显示,该平台2017年的支付安全问题发生率为0.03%,较2015年同期的0.16%发生显着下降。上述数据充分验证了区块链金融在跨界电子商务支付优化模式中的应用价值。
(二)信息核实认证策略
区块链技术的引人可为跨界电子商务支付优化模式提供良好的风险事前控制。利用区块链技术构建区块链金融跨界电子商务支付系统后,系统可于跨界交易发生前,对交易过程中的各类身份信息及支付过程中涉及的子系统进行审核。
具体而言,在跨界支付过程中,区块链系统利用去信任化、去中心化实现事前风险控制:首先,借助区块链技术的随机散列加密算法避免系统数据被伪造等问题;其次,系统可以共识协议为工具,对跨界交易中的境外交易主体、商品信息进行事先核查,如确认相关信息符合共识协议的要求,可允许用户与交易主体发生交易;如不符合共识协议的要求,则将其剔除于区块链系统外。最后,系统还可运用跨界电子商务支付合约对跨界支付中的海关系统、物流配送系统谨慎审查,如出现不符合现象,则会阻断完整支付链条的建立,保障用户的资金安全及身份信息安全,降低金融犯罪行为的发生率。例如,某电子商务企业利用区块链金融构建区块链系统后,系统运行1年后,安全问题发生率由6.25%降至3.04%.
(三)强化信息对称策略
在传统跨界电子商务支付模式中,用户与境外售卖主体之间存在信息不对称现象,这种状况是威胁跨界支付安全的主要因素。区块链技术的引入为用户提供了一个信息对称的交易平台,其原理为:当用户(消费者)对区块链系统提出交易申请时,区块链系统会以共识协议为参照,对用户提交请求中的商品信息、售卖者信息进行审核,经审核确认相关信息未违背共识协议中的相关条例后,区块链系统可自动为用户生成支付命令,即通过用户的支付请求[2].同时,系统将自动将整个交易过程中涉及的用户身份信息、售卖者身份信息、商品信息等逐一录入系统对应模块中。在这种跨界支付优化模式下,用户信息、售卖者信息的验证均由区块链系统自动完成,可有效避免传统跨界支付模式中的信息不对称问题,并确保整个交易过程的透明度。
例如,某跨界电子商务支付平台利用区块链技术组件了区块链金融跨界支付系统,系统运行半年后,用户(消费者)对该支付平台的满意度由原本的73.26%提升至85.20%,且信息对称、支付安全是用户对该支付平台满意的两条主要原因。因此,电子商务企业应于跨界电子商务支付平台系统构建中引入区块链技术,以提高跨界交易的安全陛。
三、结论
综上所述,传统跨界电子商务支付模式中存在诸多不足,建立跨界支付优化模式具有一定的必要性。为了实现上述目的,跨界支付平台可将区块链技术引入跨界支付平台中,利用区块链技术的去中心化、去信任化等优势,为用户营造安全的支付平台,降低用户身份信息被盗、资金损失等安全问题的发生率。此外,随着技术的不断更新,区块链金融与跨界电子商务支付优化模式之间的关联将变得越来越紧密,有助于跨界支付安全水平的提高。
区块链有哪些安全软肋
区块链有哪些安全软肋
区块链是比特币中的核心技术区块链阻断,在无法建立信任关系的互联网上,区块链技术依靠密码学和巧妙的分布式算法,无需借助任何第三方中心机构的介入,用数学的方法使参与者达成共识,保证交易记录的存在性、合约的有效性以及身份的不可抵赖性。
区块链技术常被人们提及的特性是去中心化、共识机制等,由区块链引申出来的虚拟数字货币是目前全球最火爆的项目之一,正在成就出新的一批亿万级富豪。像币安交易平台,成立短短几个月,就被国际知名机构评级市值达400亿美金,成为区块链阻断了最富有的一批数字货币创业先驱者。但是自从有数字货币交易所至今,交易所被攻击、资金被盗事件层出不穷,且部分数字货币交易所被黑客攻击损失惨重,甚至倒闭。
一、 令人震惊的数字货币交易所被攻击事件
从最早的比特币,到后来的莱特币、以太币,目前已有几百种数字货币。随着价格的攀升,各种数字货币系统被攻击、数字货币被盗事件不断增加,被盗金额也是一路飙升。让我们来回顾一下令人震惊的数字货币被攻击、被盗事件。
2014年2月24日,当时世界最大的比特币交易所运营商Mt.Gox宣布其交易平台的85万个比特币已经被盗一空,承担着超过80%的比特币交易所的Mt.Gox由于无法弥补客户损失而申请破产保护。
经分析,原因大致为Mt.Gox存在单点故障结构这种严重的错误,被黑客用于发起DDoS攻击:
比特币提现环节的签名被黑客篡改并先于正常的请求进入比特币网络,结果伪造的请求可以提现成功,而正常的提现请求在交易平台中出现异常并显示为失败,此时黑客实际上已经拿到提现的比特币区块链阻断了,但是区块链阻断他继续在Mt.Gox平台请求重复提现,Mt.Gox在没有进行事务一致性校验(对账)的情况下,重复支付区块链阻断了等额的比特币,导致交易平台的比特币被窃取。
2016年8月4日,最大的美元比特币交易平台Bitfinex发布公告称,网站发现安全漏洞,导致近12万枚比特币被盗,总价值约为7500万美元。
2018年1月26日,日本的一家大型数字货币交易平台Coincheck系统遭遇黑客攻击,导致时价580亿日元、约合5.3亿美元的数字货币“新经币”被盗,这是史上最大的数字货币盗窃案。
2018年3月7日,世界第二大数字货币交易所币安(Binance)被黑客攻击的消息让币圈彻夜难眠,黑客竟然玩起了经济学,买空卖空“炒币”割韭菜。根据币安公告,黑客的攻击过程包括:
1) 在长时间里,利用第三方钓鱼网站偷盗用户的账号登录信息。黑客通过使用Unicode字符冒充正规Binance网址域名里的部分字母对用户实施网页钓鱼攻击。
2) 黑客获得账号后,自动创建交易API,之后便静默潜伏。
3) 3月7日黑客通过盗取的API Key,利用买空卖空的方式,将VIA币值直接拉暴100多倍,比特币大跌10%,以全球总计1700万个比特币计算,比特币一夜丢了170亿美元。
二、黑客攻击为什么能屡屡得手
基于区块链的数字货币其火热行情让黑客们垂涎不已,被盗金额不断刷新纪录,盗窃事件的发生也引发了人们对数字货币安全的担忧,人们不禁要问:区块链技术安全吗?
随着人们对区块链技术的研究与应用,区块链系统除了其所属信息系统会面临病毒、木马等恶意程序威胁及大规模DDoS攻击外,还将由于其特性而面临独有的安全挑战。
1. 算法实现安全
由于区块链大量应用了各种密码学技术,属于算法高度密集工程,在实现上比较容易出现问题。历史上有过此类先例,比如NSA对RSA算法实现埋入缺陷,使其能够轻松破解别人的加密信息。一旦爆发这种级别的漏洞,可以说构成区块链整个大厦的地基将不再安全,后果极其可怕。之前就发生过由于比特币随机数产生器出现问题所导致的比特币被盗事件,理论上,在签名过程中两次使用同一个随机数,就能推导出私钥。
2. 共识机制安全
当前的区块链技术中已经出现了多种共识算法机制,最常见的有PoW、PoS、DPos。但这些共识机制是否能实现并保障真正的安全,需要更严格的证明和时间的考验。
3. 区块链使用安全
区块链技术一大特点就是不可逆、不可伪造,但前提是私钥是安全的。私钥是用户生成并保管的,理论上没有第三方参与。私钥一旦丢失,便无法对账户的资产做任何操作。一旦被黑客拿到,就能转移数字货币。
4. 系统设计安全
像Mt.Gox平台由于在业务设计上存在单点故障,所以其系统容易遭受DoS攻击。目前区块链是去中心化的,而交易所是中心化的。中心化的交易所,除了要防止技术盗窃外,还得管理好人,防止人为盗窃。
总体来说,从安全性分析的角度,区块链面临着算法实现、共识机制、使用及设计上挑战,同时黑客通过利用系统安全漏洞、业务设计缺陷也可达成攻击目的。目前,黑客攻击已经在对区块链系统安全性造成越来越大的影响。
三、如何保证区块链的安全
为了保证区块链系统安全,建议参照NIST的网络安全框架,从战略层面、一个企业或者组织的网络安全风险管理的整个生命周期的角度出发构建识别、保护、检测、响应和恢复5个核心组成部分,来感知、阻断区块链风险和威胁。
除此之外,根据区块链技术自身特点重点关注算法、共识机制、使用及设计上的安全。
针对算法实现安全性:一方面选择采用新的、本身经得起考验的密码技术,如国密公钥算法SM2等。另一方面对核心算法代码进行严格、完整测试的同时进行源码混淆,增加黑客逆向攻击的难度和成本。
针对共识算法安全性:PoW中使用防ASIC杂凑函数,使用更有效的共识算法和策略。
针对使用安全性:对私钥的生成、存储进行保护,敏感数据加密存储。
针对设计安全性:一方面要保证设计的功能尽量完善,如采用私钥白盒签名技术,防止病毒、木马在系统运行过程中提取私钥;设计私钥泄露追踪功能,尽可能减少私钥泄露后的损失。另一方面,应对某些关键业务设计去中心化,防止单点故障攻击。
区块链的共识机制
一、区块链共识机制的目标
区块链是什么?简单而言,区块链是一种去中心化的数据库,或可以叫作分布式账本(distributed ledger)。传统上所有的数据库都是中心化的,例如一间银行的账本就储存在银行的中心服务器里。中心化数据库的弊端是数据的安全及正确性全系于数据库运营方(即银行),因为任何能够访问中心化数据库的人(如银行职员或黑客)都可以破坏或修改其中的数据。
而区块链技术则容许数据库存放在全球成千上万的电脑上,每个人的账本通过点对点网络进行同步,网络中任何用户一旦增加一笔交易,交易信息将通过网络通知其他用户验证,记录到各自的账本中。区块链之所以得其名是因为它是由一个个包含交易信息的区块(block)从后向前有序链接起来的数据结构。
很多人对区块链的疑问是,如果每一个用户都拥有一个独立的账本,那么是否意味着可以在自己的账本上添加任意的交易信息,而成千上万个账本又如何保证记账的一致性? 解决记账一致性问题正是区块链共识机制的目标 。区块链共识机制旨在保证分布式系统里所有节点中的数据完全相同并且能够对某个提案(proposal)(例如是一项交易纪录)达成一致。然而分布式系统由于引入了多个节点,所以系统中会出现各种非常复杂的情况;随着节点数量的增加,节点失效或故障、节点之间的网络通信受到干扰甚至阻断等就变成了常见的问题,解决分布式系统中的各种边界条件和意外情况也增加了解决分布式一致性问题的难度。
区块链又可分为三种:
公有链:全世界任何人都可以随时进入系统中读取数据、发送可确认交易、竞争记账的区块链。公有链通常被认为是“完全去中心化“的,因为没有任何人或机构可以控制或篡改其中数据的读写。公有链一般会通过代币机制鼓励参与者竞争记账,来确保数据的安全性。
联盟链:联盟链是指有若干个机构共同参与管理的区块链。每个机构都运行着一个或多个节点,其中的数据只允许系统内不同的机构进行读写和发送交易,并且共同来记录交易数据。这类区块链被认为是“部分去中心化”。
私有链:指其写入权限是由某个组织和机构控制的区块链。参与节点的资格会被严格的限制,由于参与的节点是有限和可控的,因此私有链往往可以有极快的交易速度、更好的隐私保护、更低的交易成本、不容易被恶意攻击、并且能够做到身份认证等金融行业必须的要求。相比中心化数据库,私有链能够防止机构内单节点故意隐瞒或篡改数据。即使发生错误,也能够迅速发现来源,因此许多大型金融机构在目前更加倾向于使用私有链技术。
二、区块链共识机制的分类
解决分布式一致性问题的难度催生了数种共识机制,它们各有其优缺点,亦适用于不同的环境及问题。被众人常识的共识机制有:
l PoW(Proof of Work)工作量证明机制
l PoS(Proof of Stake)股权/权益证明机制
l DPoS(Delegated Proof of Stake)股份授权证明机制
l PBFT(Practical Byzantine Fault Tolerance)实用拜占庭容错算法
l DBFT(Delegated Byzantine Fault Tolerance)授权拜占庭容错算法
l SCP (Stellar Consensus Protocol ) 恒星共识协议
l RPCA(Ripple Protocol Consensus Algorithm)Ripple共识算法
l Pool验证池共识机制
(一)PoW(Proof of Work)工作量证明机制
1. 基本介绍
在该机制中,网络上的每一个节点都在使用SHA256哈希函数(hash function) 运算一个不断变化的区块头的哈希值 (hash sum)。 共识要求算出的值必须等于或小于某个给定的值。 在分布式网络中,所有的参与者都需要使用不同的随机数来持续计算该哈希值,直至达到目标为止。当一个节点的算出确切的值,其他所有的节点必须相互确认该值的正确性。之后新区块中的交易将被验证以防欺诈。
在比特币中,以上运算哈希值的节点被称作“矿工”,而PoW的过程被称为“挖矿”。挖矿是一个耗时的过程,所以也提出了相应的激励机制(例如向矿工授予一小部分比特币)。PoW的优点是完全的去中心化,其缺点是消耗大量算力造成了的资源浪费,达成共识的周期也比较长,共识效率低下,因此其不是很适合商业使用。
2. 加密货币的应用实例
比特币(Bitcoin) 及莱特币(Litecoin)。以太坊(Ethereum) 的前三个阶段(Frontier前沿、Homestead家园、Metropolis大都会)皆采用PoW机制,其第四个阶段 (Serenity宁静) 将采用权益证明机制。PoW适用于公有链。
PoW机制虽然已经成功证明了其长期稳定和相对公平,但在现有框架下,采用PoW的“挖矿”形式,将消耗大量的能源。其消耗的能源只是不停的去做SHA256的运算来保证工作量公平,并没有其他的存在意义。而目前BTC所能达到的交易效率为约5TPS(5笔/秒),以太坊目前受到单区块GAS总额的上限,所能达到的交易频率大约是25TPS,与平均千次每秒、峰值能达到万次每秒处理效率的VISA和MASTERCARD相差甚远。
3. 简图理解模式
(ps:其中A、B、C、D计算哈希值的过程即为“挖矿”,为了犒劳时间成本的付出,机制会以一定数量的比特币作为激励。)
(Ps:PoS模式下,你的“挖矿”收益正比于你的币龄(币的数量*天数),而与电脑的计算性能无关。我们可以认为任何具有概率性事件的累计都是工作量证明,如淘金。假设矿石含金量为p% 质量, 当你得到一定量黄金时,我们可以认为你一定挖掘了1/p 质量的矿石。而且得到的黄金数量越多,这个证明越可靠。)
(二)PoS(Proof of Stake)股权/权益证明机制
1.基本介绍
PoS要求人们证明货币数量的所有权,其相信拥有货币数量多的人攻击网络的可能性低。基于账户余额的选择是非常不公平的,因为单一最富有的人势必在网络中占主导地位,所以提出了许多解决方案。
在股权证明机制中,每当创建一个区块时,矿工需要创建一个称为“币权”的交易,这个交易会按照一定比例预先将一些币发给矿工。然后股权证明机制根据每个节点持有代币的比例和时间(币龄), 依据算法等比例地降低节点的挖矿难度,以加快节点寻找随机数的速度,缩短达成共识所需的时间。
与PoW相比,PoS可以节省更多的能源,更有效率。但是由于挖矿成本接近于0,因此可能会遭受攻击。且PoS在本质上仍然需要网络中的节点进行挖矿运算,所以它同样难以应用于商业领域。
2.数字货币的应用实例
PoS机制下较为成熟的数字货币是点点币(Peercoin)和未来币(NXT),相比于PoW,PoS机制节省了能源,引入了" 币天 "这个概念来参与随机运算。PoS机制能够让更多的持币人参与到记账这个工作中去,而不需要额外购买设备(矿机、显卡等)。每个单位代币的运算能力与其持有的时间长成正相关,即持有人持有的代币数量越多、时间越长,其所能签署、生产下一个区块的概率越大。一旦其签署了下一个区块,持币人持有的币天即清零,重新进入新的循环。
PoS适用于公有链。
3.区块签署人的产生方式
在PoS机制下,因为区块的签署人由随机产生,则一些持币人会长期、大额持有代币以获得更大概率地产生区块,尽可能多的去清零他的"币天"。因此整个网络中的流通代币会减少,从而不利于代币在链上的流通,价格也更容易受到波动。由于可能会存在少量大户持有整个网络中大多数代币的情况,整个网络有可能会随着运行时间的增长而越来越趋向于中心化。相对于PoW而言,PoS机制下作恶的成本很低,因此对于分叉或是双重支付的攻击,需要更多的机制来保证共识。稳定情况下,每秒大约能产生12笔交易,但因为网络延迟及共识问题,需要约60秒才能完整广播共识区块。长期来看,生成区块(即清零"币天")的速度远低于网络传播和广播的速度,因此在PoS机制下需要对生成区块进行"限速",来保证主网的稳定运行。
4.简图理解模式
(PS:拥有越多“股份”权益的人越容易获取账权。是指获得多少货币,取决于你挖矿贡献的工作量,电脑性能越好,分给你的矿就会越多。)
(在纯POS体系中,如NXT,没有挖矿过程,初始的股权分配已经固定,之后只是股权在交易者之中流转,非常类似于现实世界的股票。)
(三)DPoS(Delegated Proof of Stake)股份授权证明机制
1.基本介绍
由于PoS的种种弊端,由此比特股首创的权益代表证明机制 DPoS(Delegated Proof of Stake)应运而生。DPoS 机制中的核心的要素是选举,每个系统原生代币的持有者在区块链里面都可以参与选举,所持有的代币余额即为投票权重。通过投票,股东可以选举出理事会成员,也可以就关系平台发展方向的议题表明态度,这一切构成了社区自治的基础。股东除了自己投票参与选举外,还可以通过将自己的选举票数授权给自己信任的其它账户来代表自己投票。
具体来说, DPoS由比特股(Bitshares)项目组发明。股权拥有着选举他们的代表来进行区块的生成和验证。DPoS类似于现代企业董事会制度,比特股系统将代币持有者称为股东,由股东投票选出101名代表, 然后由这些代表负责生成和验证区块。 持币者若想称为一名代表,需先用自己的公钥去区块链注册,获得一个长度为32位的特有身份标识符,股东可以对这个标识符以交易的形式进行投票,得票数前101位被选为代表。
代表们轮流产生区块,收益(交易手续费)平分。DPoS的优点在于大幅减少了参与区块验证和记账的节点数量,从而缩短了共识验证所需要的时间,大幅提高了交易效率。从某种角度来说,DPoS可以理解为多中心系统,兼具去中心化和中心化优势。优点:大幅缩小参与验证和记账节点的数量,可以达到秒级的共识验证。缺点:投票积极性不高,绝大部分代币持有者未参与投票;另整个共识机制还是依赖于代币,很多商业应用是不需要代币存在的。
DPoS机制要求在产生下一个区块之前,必须验证上一个区块已经被受信任节点所签署。相比于PoS的" 全民挖矿 ",DPoS则是利用类似" 代表大会 "的制度来直接选取可信任节点,由这些可信任节点(即见证人)来代替其他持币人行使权力,见证人节点要求长期在线,从而解决了因为PoS签署区块人不是经常在线而可能导致的产块延误等一系列问题。 DPoS机制通常能达到万次每秒的交易速度,在网络延迟低的情况下可以达到十万秒级别,非常适合企业级的应用。 因为公信宝数据交易所对于数据交易频率要求高,更要求长期稳定性,因此DPoS是非常不错的选择。
2. 股份授权证明机制下的机构与系统
理事会是区块链网络的权力机构,理事会的人选由系统股东(即持币人)选举产生,理事会成员有权发起议案和对议案进行投票表决。
理事会的重要职责之一是根据需要调整系统的可变参数,这些参数包括:
l 费用相关:各种交易类型的费率。
l 授权相关:对接入网络的第三方平台收费及补贴相关参数。
l 区块生产相关:区块生产间隔时间,区块奖励。
l 身份审核相关:审核验证异常机构账户的信息情况。
l 同时,关系到理事会利益的事项将不通过理事会设定。
在Finchain系统中,见证人负责收集网络运行时广播出来的各种交易并打包到区块中,其工作类似于比特币网络中的矿工,在采用 PoW(工作量证明)的比特币网络中,由一种获奖概率取决于哈希算力的抽彩票方式来决定哪个矿工节点产生下一个区块。而在采用 DPoS 机制的金融链网络中,通过理事会投票决定见证人的数量,由持币人投票来决定见证人人选。入选的活跃见证人按顺序打包交易并生产区块,在每一轮区块生产之后,见证人会在随机洗牌决定新的顺序后进入下一轮的区块生产。
3. DPoS的应用实例
比特股(bitshares) 采用DPoS。DPoS主要适用于联盟链。
4.简图理解模式
(四)PBFT(Practical Byzantine Fault Tolerance)实用拜占庭容错算法
1. 基本介绍
PBFT是一种基于严格数学证明的算法,需要经过三个阶段的信息交互和局部共识来达成最终的一致输出。三个阶段分别为预备 (pre-prepare)、准备 (prepare)、落实 (commit)。PBFT算法证明系统中只要有2/3比例以上的正常节点,就能保证最终一定可以输出一致的共识结果。换言之,在使用PBFT算法的系统中,至多可以容忍不超过系统全部节点数量1/3的失效节点 (包括有意误导、故意破坏系统、超时、重复发送消息、伪造签名等的节点,又称为”拜占庭”节点)。
2. PBFT的应用实例
著名联盟链Hyperledger Fabric v0.6采用的是PBFT,v1.0又推出PBFT的改进版本SBFT。PBFT主要适用于私有链和联盟链。
3. 简图理解模式
上图显示了一个简化的PBFT的协议通信模式,其中C为客户端,0 – 3表示服务节点,其中0为主节点,3为故障节点。整个协议的基本过程如下:
(1) 客户端发送请求,激活主节点的服务操作;
(2) 当主节点接收请求后,启动三阶段的协议以向各从节点广播请求;
(a) 序号分配阶段,主节点给请求赋值一个序号n,广播序号分配消息和客户端的请求消息m,并将构造pre-prepare消息给各从节点;
(b) 交互阶段,从节点接收pre-prepare消息,向其他服务节点广播prepare消息;
(c) 序号确认阶段,各节点对视图内的请求和次序进行验证后,广播commit消息,执行收到的客户端的请求并给客户端响应。
(3) 客户端等待来自不同节点的响应,若有m+1个响应相同,则该响应即为运算的结果;
(五)DBFT(Delegated Byzantine Fault Tolerance)授权拜占庭容错算法
1. 基本介绍
DBFT建基于PBFT的基础上,在这个机制当中,存在两种参与者,一种是专业记账的“超级节点”,一种是系统当中不参与记账的普通用户。普通用户基于持有权益的比例来投票选出超级节点,当需要通过一项共识(记账)时,在这些超级节点中随机推选出一名发言人拟定方案,然后由其他超级节点根据拜占庭容错算法(见上文),即少数服从多数的原则进行表态。如果超过2/3的超级节点表示同意发言人方案,则共识达成。这个提案就成为最终发布的区块,并且该区块是不可逆的,所有里面的交易都是百分之百确认的。如果在一定时间内还未达成一致的提案,或者发现有非法交易的话,可以由其他超级节点重新发起提案,重复投票过程,直至达成共识。
2. DBFT的应用实例
国内加密货币及区块链平台NEO是 DBFT算法的研发者及采用者。
3. 简图理解模式
假设系统中只有四个由普通用户投票选出的超级节点,当需要通过一项共识时,系统就会从代表中随机选出一名发言人拟定方案。发言人会将拟好的方案交给每位代表,每位代表先判断发言人的计算结果与它们自身纪录的是否一致,再与其它代表商讨验证计算结果是否正确。如果2/3的代表一致表示发言人方案的计算结果是正确的,那么方案就此通过。
如果只有不到2/3的代表达成共识,将随机选出一名新的发言人,再重复上述流程。这个体系旨在保护系统不受无法行使职能的领袖影响。
上图假设全体节点都是诚实的,达成100%共识,将对方案A(区块)进行验证。
鉴于发言人是随机选出的一名代表,因此他可能会不诚实或出现故障。上图假设发言人给3名代表中的2名发送了恶意信息(方案B),同时给1名代表发送了正确信息(方案A)。
在这种情况下该恶意信息(方案B)无法通过。中间与右边的代表自身的计算结果与发言人发送的不一致,因此就不能验证发言人拟定的方案,导致2人拒绝通过方案。左边的代表因接收了正确信息,与自身的计算结果相符,因此能确认方案,继而成功完成1次验证。但本方案仍无法通过,因为不足2/3的代表达成共识。接着将随机选出一名新发言人,重新开始共识流程。
上图假设发言人是诚实的,但其中1名代表出现了异常;右边的代表向其他代表发送了不正确的信息(B)。
在这种情况下发言人拟定的正确信息(A)依然可以获得验证,因为左边与中间诚实的代表都可以验证由诚实的发言人拟定的方案,达成2/3的共识。代表也可以判断到底是发言人向右边的节点说谎还是右边的节点不诚实。
(六)SCP (Stellar Consensus Protocol ) 恒星共识协议
1. 基本介绍
SCP 是 Stellar (一种基于互联网的去中心化全球支付协议) 研发及使用的共识算法,其建基于联邦拜占庭协议 (Federated Byzantine Agreement) 。传统的非联邦拜占庭协议(如上文的PBFT和DBFT)虽然确保可以通过分布式的方法达成共识,并达到拜占庭容错 (至多可以容忍不超过系统全部节点数量1/3的失效节点),它是一个中心化的系统 — 网络中节点的数量和身份必须提前知晓且验证过。而联邦拜占庭协议的不同之处在于它能够去中心化的同时,又可以做到拜占庭容错。
[…]
(七)RPCA(Ripple Protocol Consensus Algorithm)Ripple共识算法
1. 基本介绍
RPCA是Ripple(一种基于互联网的开源支付协议,可以实现去中心化的货币兑换、支付与清算功能)研发及使用的共识算法。在 Ripple 的网络中,交易由客户端(应用)发起,经过追踪节点(tracking node)或验证节点(validating node)把交易广播到整个网络中。追踪节点的主要功能是分发交易信息以及响应客户端的账本请求。验证节点除包含追踪节点的所有功能外,还能够通过共识协议,在账本中增加新的账本实例数据。
Ripple 的共识达成发生在验证节点之间,每个验证节点都预先配置了一份可信任节点名单,称为 UNL(Unique Node List)。在名单上的节点可对交易达成进行投票。共识过程如下:
(1) 每个验证节点会不断收到从网络发送过来的交易,通过与本地账本数据验证后,不合法的交易直接丢弃,合法的交易将汇总成交易候选集(candidate set)。交易候选集里面还包括之前共识过程无法确认而遗留下来的交易。
(2) 每个验证节点把自己的交易候选集作为提案发送给其他验证节点。
(3) 验证节点在收到其他节点发来的提案后,如果不是来自UNL上的节点,则忽略该提案;如果是来自UNL上的节点,就会对比提案中的交易和本地的交易候选集,如果有相同的交易,该交易就获得一票。在一定时间内,当交易获得超过50%的票数时,则该交易进入下一轮。没有超过50%的交易,将留待下一次共识过程去确认。
(4) 验证节点把超过50%票数的交易作为提案发给其他节点,同时提高所需票数的阈值到60%,重复步骤(3)、步骤(4),直到阈值达到80%。
(5) 验证节点把经过80%UNL节点确认的交易正式写入本地的账本数据中,称为最后关闭账本(last closed ledger),即账本最后(最新)的状态。
在Ripple的共识算法中,参与投票节点的身份是事先知道的,因此,算法的效率比PoW等匿名共识算法要高效,交易的确认时间只需几秒钟。这点也决定了该共识算法只适合于联盟链或私有链。Ripple共识算法的拜占庭容错(BFT)能力为(n-1)/5,即可以容忍整个网络中20%的节点出现拜占庭错误而不影响正确的共识。
2. 简图理解模式
共识过程节点交互示意图:
共识算法流程:
(八)POOL验证池共识机制
Pool验证池共识机制是基于传统的分布式一致性算法(Paxos和Raft)的基础上开发的机制。Paxos算法是1990年提出的一种基于消息传递且具有高度容错特性的一致性算法。过去, Paxos一直是分布式协议的标准,但是Paxos难于理解,更难以实现。Raft则是在2013年发布的一个比Paxos简单又能实现Paxos所解决问题的一致性算法。Paxos和Raft达成共识的过程皆如同选举一样,参选者需要说服大多数选民(服务器)投票给他,一旦选定后就跟随其操作。Paxos和Raft的区别在于选举的具体过程不同。而Pool验证池共识机制即是在这两种成熟的分布式一致性算法的基础上,辅之以数据验证的机制。
「世经研究」央行:在加快金融改革开放中保持金融稳定
一、事件背景
新冠肺炎疫情爆发,给国内实体经济和中小微企业造成严重危害,经济下行压力加大,经济状况步入低谷。全球范围疫情快速蔓延,对全球经济造成了较大的冲击。同时,全球金融市场发生了较大程度的动荡。目前疫情控制基本稳定,金融市场仍面临一定挑战。“后疫情世界”金融稳定可能面对的风险挑战包括:
一是大规模政府救助与经济刺激措施将导致政府赤字和政府债务的大幅上升,财政的稳健性严重下降。在经济复苏和财政收入增长乏力的情况下,政府赤字和债务的过快增长,会形成政府债务违约和政府信用危机的风险,进而会威胁到国家乃至全球的金融稳定。
二是政府大规模信贷担保、中央银行大规模再贷款、商业银行大规模放贷、企业大规模发行债券等,都会使企业的债务规模进一步扩大,杠杆水平进一步上升。由此会进一步加重企业的债务负担,影响企业的持续 健康 发展。
三是中央银行大量购入政府债券和企业债券、大量再贷款和再贴现,形成大规模的基础货币投放,从而形成巨大的通货膨胀潜在压力。
四是政府提供大规模信贷担保,银行放宽信贷风险审核要求、提高贷款风险容忍度及降低贷款利率等措施,会使银行不良贷款及风险损失大幅上升,利润大幅下降。
五是2008年金融危机后制定的银行资本监管标准关于损失吸收能力的要求并没有完全落实,一些标准要求被放松,一些标准要求被延期,还有一些标准要求尚在过渡期。
六是各国为抗击和阻断疫情蔓延,都普遍实施了严格的封闭、隔离措施,使原有的产业链、供应链、贸易链、资金链、债务链及信用链等都受到严重冲击破坏,疫情后面临着重新建立和疏通的挑战。
8月30日,由中国金融四十人论坛(CF40)主办、CF40资深研究员肖钢牵头负责的《2020·径山报告》正式发布。CF40特邀成员、央行研究局局长王信在报告发布会上表示,我国金融风险由前几年的快速积累逐渐转向高位缓释,但金融风险正在呈现一些新的特点和演进趋势。要平衡好推进改革、加强监管、防范道德风险与保持经济平稳运行之间的关系,在加快金融改革开放中保持金融稳定。
2020年,央行继续深化金融改革开放。深化金融市场和金融机构改革。积极发展债券市场,继续推动债券市场基础设施互联互通。加强金融基础设施统筹监管与建设规划。深化中小银行和农信社改革,进一步健全政策性银行治理结构。积极稳妥推进人民币国际化。深入推进外汇管理体制改革,支持自贸试验区、自贸港等在外汇管理改革方面先行先试。完善跨境资本流动“宏观审慎+微观监管”两位一体管理框架。但是,与此同时防范金融风险。重点领域包括:部分中小金融机构风险,地方政府性债务风险,房地产市场风险以及境内外金融风险叠加共振可能性增大。
第一,既要支持三农、小微、民营等经济薄弱环节,又要防止金融机构不良资产上升,进一步增加中小银行脆弱性。第二,既要逐步进行风险处置、释放压力,又要防止处置风险的风险,加大经济下行压力,引发区域性甚至系统性风险。第三,既要扩大金融业双向开放,通过竞争提质增效,又要防止能力和竞争力不足带来的风险。第四,既要推动人民币国际化,减少货币错配和对美元体系的依赖,又要统筹协调好资本项目开放和人民币汇率机制完善。第五,既要发挥金融 科技 促进创新服务实体经济的作用,又要防止其过度创新,放大金融风险。
针对新冠疫情带来的经济新变化,商业银业要 探索 走出一条创新务实的发展之路。一是扎实开展中小企业金融服务能力提升工程。对普惠贷款规模实行计划单列,确保贷款快速增长。完善绩效考评机制,提高普惠绩效考核权重。把握融资政策,对符合条件的中小企业做到能贷尽贷,能延尽延,能减则减。二是加大金融 科技 产品创新应用。由于中小企业为数众多,应加速大数据、区块链、人工智能与云计算等金融 科技 与普惠金融的结合,实现智慧营销客户,智慧识别风险,智慧管理考评。大力发展数字供应链金融,降低企业融资风险与履约风险,提高工作效率。三是积报寻求政府与 社会 各方的支持与合作。借助政府、协会、商会与大型企业,广泛了解客户融资需求,识别潜力客户,降低融资风险,营销优质客户。
从“严防死守”向“主动经营”转变。有效应对新冠疫情,科学防控是关键。银行本身就是高风险行业,严防死守不是上策,经营风险才是王道。本次疫情最受伤、最无助的群体是小微企业、个体工商户。要包容“有贡献”“有潜力”“有缺陷”的客户,不惧贷、不抽贷、不压贷、不惜贷。但是,不良贷款率不是越低越好,必须平衡处理好风险、业务、效益三方关系。新冠疫情后要重塑风险考核和管理机制。
从“线下为主”向“上下融合”转变。一是“营销+ 科技 ”。银行数字化转型首要任务是如何加快把存量客户“迁移”到线上,推进获客、产品、服务线上化,有效降低人均管户成本。二是“管理+ 科技 ”。这次疫情表明,没有大数据、人工智能、云计算等先进技术的支撑,科学防控都是空话。对银行而言,数字化转型的三大目标主要是降低经营成本、提高管理效率、提升客户体验。
从“自我发展”向“构建生态”转变。受新冠疫情影响,一些企业甚至行业的龙头企业,自身非常 健康 ,但发展的生态被疫情破坏了,导致其面临倒闭的困境。同样,银行发展到一定阶段后,不能仅靠机制物资推动发展,而要以情怀格局构建发展生态。一是构建 社会 生态。新冠疫情后,银行不能一味地追求自我发展,要以利他的精神和情怀,积极投身 社会 治理体系和信用环境体系建设。二是构建客户生态。新冠疫情后,银行要把客户作为决定生死的战略物资去储备,加大对受疫情影响客户、地方经济、小微企业的扶持力度,帮助他们共渡难关。
区块链12年:应用在了哪些领域?
#「闪光时刻」主题征文 二期#
人们曾无数次地谈起区块链的适用场景和使用时机。但实际上区块链阻断,简单粗暴地将区块链和所有业务捆绑在一起的行为是非常愚蠢且荒谬的。
单纯用“区块链”这个词(而不是它背后的技术)进行炒作的话,结果终将是一场空。但如果使用得当的话,区块链也确实可以推动某些经济领域的发展。
要想实现这一目标,就需要一步步地慢慢来。Gartner的专家认为,区块链目前正处于“摆脱幻想”阶段边缘。在这一阶段,其技术弊端暴露无遗,各路媒体也大都持批判态度。
那么,到底有没有真正以区块链为基础的好产品呢区块链阻断?如果有的话,又是在哪些领域呢?
首先,金融服务是一个不错的选择,毕竟很多传统中介机构都存在低透明度和高佣金的问题。目前,许多大银行已经在研究并测试去中心化的解决方案了。那么现在市场上可供选择的方案有哪些呢?
净额清算就是一个很好的例子。它以Hyperledger Fabric为基础,能够抵消由两个或多个交易方之间交易所导致的多个头寸或支付费用。常被用来确定多方协议中应获得酬金的一方。净额作为一个普遍概念,在金融市场中(证券交易中)有许多更为具体的用途。
此外,大家对区块链债券、抵押贷款和银行担保的讨论也层出不穷。几乎所有的大银行,包括伊斯兰银行,都在尝试这种做法。
Hyperledger Fabric和Corda区块链技术也常被应用于其区块链阻断他用例,但前景究竟如何就需要我们通过之后的持续跟踪观察才能得出最终结论。
美国银行、高盛、花旗银行、摩根士丹利、摩根大通和中国银行、澳大利亚联邦银行在2019年都取得了不错的效果。此外,在银行业中,人们常会提到跨境金融交易,甚至有意图要摆脱SWIFT。
有人认为,区块链技术在版权保护和打击数据造假方面大有推广前景。例如,出于保护版权的目的,初创公司Sputnik DLT在Waves平台上开发了Depositor服务。
同样,Emernotar是基于Emercoin的类似解决方案,使用的是SHA-512算法。据开发者介绍,企业和律师可以借助Emernotar服务来签订合同,使用在线服务来收集用户许可,创意产业代表也可以以此来确认版权。
以Emercoin技术为基础的democracynotary.org平台旨在保护与选举相关的重要信息。虽然在选举过程中,区块链尚无法保证投票的匿名性,但至少可以保证投票的真实性。
最近,这一平台的效果在马其顿的一项全民公投中得到了检验:公投内容关于是否批准一项与希腊的条约——要求更改马其顿的国名为“北马其顿”。该平台对全民投票过程中的公开报告进行公证,进而阻断了虚假信息的传播。
区块链用例在房地产交易注册方面极具发展前景。去年,曾有人试图利用以太坊区块链上的智能合约在司法管辖区进行此类购买/销售交易。虽然并不是所有地方的立法机构都能理解律师在做的事情,但过去和将来都有尝试。
例如,最著名的例子是,曾通过加利福尼亚一个去中心化的Propy市场,达成了一项出售10英亩土地的交易,交易完全以比特币进行,并使用区块链进行注册。此后,欧盟也完成了首个区块链房地产销售。
2018年12月,瑞士金融市场监管局批准了区块链公司“Blockimmo房地产公司”的商业模式。目前,Blockimmo平台正处于测试阶段,可供瑞士和列支敦士登的居民使用。之后,该公司计划将进入其他整个欧洲市场。
部分专家十分看好区块链在批发和物流领域的应用前景;但同时,也有部分专家认为它在该领域毫无用武之地。然而,作为消费者,我们更应该肯定行业内已经取得的成功。
2018年晚秋,石油巨头BP和壳牌(Shell)、大型银行及公司推出了Vakt区块链平台,旨在优化商品交易流程——包括将纸质文档转换为智能合约。
同时,阿联酋也在领域内使用了区块链技术——Maqta Gateway LLC在阿布扎比推出了首个区块链物流解决方案。公司开发的Silsal区块链技术可以提高物流和货运效率。Maqta Gateway希望能够通过DLT技术来减少文书工作量,促进实时状态更新并加快信息共享速度。
去年秋天还启动了IBM食品信托区块链平台——平台以Hyperledger Fabric技术为基础,旨在调节食品行业供应链。家乐福(Carrefour)、雀巢(Nestle)、都乐食品(Dole Food)、泰森食品(Tyson Foods)、克罗格(Kroger)、联合利华(Unilever)、沃尔玛(Walmart)等知名企业都是该平台成员。IBM区块链服务每月费用从100美元到10,000美元不等,这也解释了为何这些行业巨头愿意在这方面进行投资。
2017年秋天启动了去中心化的Shelf.Network拍卖协议。 汽车 经销商可以通过该平台进行 汽车 销售和租赁交易。
一年后,该拍卖网络获得了日本IT巨头Broadleaf的投资。同时,Broadleaf也获得了供应Shelf.Network技术的许可,为东南亚国家(包括日本、缅甸、泰国、印度尼西亚、越南、老挝、澳大利亚、印度和新加坡)建立 汽车 和零部件销售的贸易网络。
到2018年底,有6万辆来自美国的 汽车 加入了该服务网络。Shelf.Network还实现了与Carfax web服务的交互,可以通过后者向个人和企业提供车辆 历史 报告。例如,初创公司Auto1 Group GmbH在德国购买 汽车 时,通过区块链对贷款和保险产品进行了记录,这大大提高了交易速度(如果采用传统文书工作的话,需要两周时间才可完成)。
IBM商业价值研究所对大公司进行的一项调查显示,到2021年,区块链将在 汽车 行业发挥关键作用,同时,区块链也将被应用于航空领域。例如,S7航空公司和阿尔法银行(俄罗斯)已经通过在Hyperledger区块链平台上应用智能合约,实现了实时支付飞机燃油费用。
行内各界都相信DLT技术能够简化并加快相互结算流程、消除各类财务风险、实现流程自动化。与批发物流领域相同,该技术在运输领域也具有重要应用意义。
区块链技术也正逐步渗透进公共部门,被广泛用于文件认证流程。例如,Proofstack服务能够将文件与所有者的个人签名、日期和时间戳一起归档,然后将存档哈希散列写入区块链。用户还可以选择影响时间戳类型的国家,以及生成存档所需的存储位置(计算机、云端)。人们可以通过创建的存档来确认文件在何时由何人进行归档。与此同时,区块链在司法系统中的应用也越来越普及。例如,ServeManager和Integra已经将区块链技术应用到跟踪传票交付的服务中了。
在中国,由政府支持的区块链解决方案持续、迅速发展。其司法区块链系统“天平链”在发布仅三个月后,就采集了约100万份在线证据数据。平台上提交的所有资料均通过DLT认证,共计19万份文件。平台电子证据系统由北京互联网法院、中国工业控制系统应急响应小组(CICS-CERT)、工信部研究中心、百度互联网集团和TrustDo区块链初创公司共同开发。平台以互联网巨头百度的超链基础设施为基础,优化了证据收集和存储过程,通过区块链保证数据的真实性。此外,平台还通过降低与互联网相关的诉讼成本,实现了节约时间和资源的目的。
作为全球集装箱航运的领导者,Maersk于去年春天开始使用Insurwave区块链解决方案。该海上保险平台由咨询公司EY和Guardtime共同开发,以微软Azure云技术为基础。在与Insurwave合作的第一年,Maersk计划将为1000艘远洋船舶投保,数字交易总量将超50万笔。
目前,平台用户有Willis Towers Watson、XL Catlin 和MS Amlin。开发商正试图扩展Insurwave的功能,将保险业务拓展到航空和能源领域。
专门从事投资流管理的英国金融 科技 公司Calastone宣布将计算全部转移到区块链上完成。该公司预计,此项技术将有助于削减全球结算部门数十亿美元的成本。Calastone为1700多家公司提供风险评估管理服务、IT基础设施和支付解决方案,其客户包括摩根大通资产管理公司(JP Morgan Asset management)、施罗德(Schroders)和景顺(Invesco)。
如果企业目标是争取交易及DLT注册表中输入信息透明度的话,则会为区块链创造绝佳的应用场景;但是,如果企业追求的是保持匿名性或“追踪”金融交易的话,则没有区块链施展拳脚的机会。
新加坡电力集团(Singapore Power Group)推出了可再生能源(REC)证书区块链交易市场。其公司代表表示,该“内部开发”平台旨在提高此类证书交易的安全性、可靠性和可追踪性。
REC证书是证明太阳能电池板释放电量的凭证,由Cleantech Solar Asia和LYS Energy Solutions进行销售。有意购买证书的City Developments Limited和DBS Bank都对该平台十分感兴趣。Katoen Natie Singapore也已加入该平台,计划很快启动可再生电力生产能力。
韩国最大的电信公司KT 公司也推出了自己的区块链网络,其分布式注册技术涉及用户认证和改善国际漫游服务。KT公司可以借此将客户数据安全传输给合作伙伴。网络带宽每秒可处理100,000个事务。
时间将会证明这些举措是否会得到大众市场的认可。同样,区块链在电力、数据、用户标识的账户/记录/交易方面的应用都是老生常谈了。
在2017年底,麻省理工学院(MIT)使用Blockcerts钱包(可发行一种“可验证、防篡改”的认证证书),通过比特币区块链为一百多名毕业生签发了数字毕业证书。
该试验项目得到了软件公司Learning Machine的支持,该公司曾与Media Lab一起参与了Blockcerts的研发工作。
这样做的目的是让学生成为自己档案真正的所有者。Learning Machine首席执行官克里斯•贾杰斯(Chris Jagers)表示,即便有一天该机构不复存在了,人们也可以提取其中存储的重要官方信息。
第比利斯商业技术大学(Tbilisi University of Business and Technology)也使用了同样的方法:该大学通过与Emercoin合作,使用了类似的区块链平台Trusted Diploma。该平台能够借助区块链来修复注册数据(所学科目、培训质量和取得的分数)。以此来看,在将来,区块链或许能在进一步推广数字学习方法方面有用武之地。
区块链阻断的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于区块链解决的问题、区块链阻断的信息别忘了在本站进行查找喔。
标签: #区块链阻断
评论列表