区块链共识机制总结 区块链共识机制主要解决了哪两个问题

皕利分享 45 0

今天给各位分享区块链共识机制总结的知识,其中也会对区块链共识机制主要解决了哪两个问题进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

区块链的共识机制

1. 网络上的交易信息如何确认并达成共识? 

虽然经常提到共识机制,但是对于共识机制的含义和理解却并清楚。因此需要就共识机制的相关概念原理和实现方法有所理解。 

区块链的交易信息是通过网络广播传输到网络中各个节点的,在整个网络节点中如何对广播的信息进行确认并达成共识 最终写入区块呢?  如果没有相应的可靠安全的实现机制,那么就难以实现其基本的功能,因此共识机制是整个网络运行下去的一个关键。

共识机制解决了区块链如何在分布式场景下达成一致性的问题。区块链能在众多节点达到一种较为平衡的状态也是因为共识机制。那么共识机制是如何在在去中心化的思想上解决了节点间互相信任的问题呢? 

当分布式的思想被提出来时,人们就开始根据FLP定理和CAP定理设计共识算法。 规范的说,理想的分布式系统的一致性应该满足以下三点:

1.可终止性(Termination):一致性的结果可在有限时间内完成。

2.共识性(Consensus):不同节点最终完成决策的结果应该相同。

3.合法性(Validity):决策的结果必须是其他进程提出的提案。

但是在实际的计算机集群中,可能会存在以下问题:

1.节点处理事务的能力不同,网络节点数据的吞吐量有差异

2.节点间通讯的信道可能不安全

3.可能会有作恶节点出现

4.当异步处理能力达到高度一致时,系统的可扩展性就会变差(容不下新节点的加入)。

科学家认为,在分布式场景下达成 完全一致性 是不可能的。但是工程学家可以牺牲一部分代价来换取分布式场景的一致性,上述的两大定理也是这种思想,所以基于区块链设计的各种公式机制都可以看作牺牲那一部分代价来换取多适合的一致性,我的想法是可以在这种思想上进行一个灵活的变换,即在适当的时间空间牺牲一部分代价换取适应于当时场景的一致性,可以实现灵活的区块链系统,即可插拔式的区块链系统。今天就介绍一下我对各种共识机制的看法和分析,分布式系统中有无作恶节点分为拜占庭容错和非拜占庭容错机制。

FLP定理即FLP不可能性,它证明了在分布式情景下,无论任何算法,即使是只有一个进程挂掉,对于其他非失败进程,都存在着无法达成一致的可能。

FLP基于如下几点假设:

仅可修改一次 :  每个进程初始时都记录一个值(0或1)。进程可以接收消息、改动该值、并发送消息,当进程进入decide state时,其值就不再变化。所有非失败进程都进入decided state时,协议成功结束。这里放宽到有一部分进程进入decided state就算协议成功。

异步通信 :  与同步通信的最大区别是没有时钟、不能时间同步、不能使用超时、不能探测失败、消息可任意延迟、消息可乱序。

通信健壮: 只要进程非失败,消息虽会被无限延迟,但最终会被送达;并且消息仅会被送达一次(无重复)。

Fail-Stop 模型: 进程失败如同宕机,不再处理任何消息。

失败进程数量 : 最多一个进程失败。

CAP是分布式系统、特别是分布式存储领域中被讨论最多的理论。CAP由Eric Brewer在2000年PODC会议上提出,是Eric Brewer在Inktomi期间研发搜索引擎、分布式web缓存时得出的关于数据一致性(consistency)、服务可用性(availability)、分区容错性(partition-tolerance)的猜想:

数据一致性 (consistency):如果系统对一个写操作返回成功,那么之后的读请求都必须读到这个新数据;如果返回失败,那么所有读操作都不能读到这个数据,对调用者而言数据具有强一致性(strong consistency) (又叫原子性 atomic、线性一致性 linearizable consistency)[5]

服务可用性 (availability):所有读写请求在一定时间内得到响应,可终止、不会一直等待

分区容错性 (partition-tolerance):在网络分区的情况下,被分隔的节点仍能正常对外服务

在某时刻如果满足AP,分隔的节点同时对外服务但不能相互通信,将导致状态不一致,即不能满足C;如果满足CP,网络分区的情况下为达成C,请求只能一直等待,即不满足A;如果要满足CA,在一定时间内要达到节点状态一致,要求不能出现网络分区,则不能满足P。

C、A、P三者最多只能满足其中两个,和FLP定理一样,CAP定理也指示了一个不可达的结果(impossibility result)。

区块链常见的三大共识机制

区块链是建立在P2P网络,由节点参与的分布式账本系统,最大的特点是“去中心化”。也就是说在区块链系统中,用户与用户之间、用户与机构之间、机构与机构之间,无需建立彼此之间的信任,只需依靠区块链协议系统就能实现交易。

可是,要如何保证账本的准确性,权威性,以及可靠性?区块链网络上的节点为什么要参与记账?节点如果造假怎么办?如何防止账本被篡改?如何保证节点间的数据一致性?……这些都是区块链在建立“去中心化”交易时需要解决的问题,由此产生了共识机制。

所谓“共识机制”,就是通过特殊节点的投票,在很短的时间内完成对交易的验证和确认;当出现意见不一致时,在没有中心控制的情况下,若干个节点参与决策达成共识,即在互相没有信任基础的个体之间如何建立信任关系。

区块链技术正是运用一套基于共识的数学算法,在机器之间建立“信任”网络,从而通过技术背书而非中心化信用机构来进行全新的信用创造。

不同的区块链种类需要不同的共识算法来确保区块链上最后的区块能够在任何时候都反应出全网的状态。

目前为止,区块链共识机制主要有以下几种:POW工作量证明、POS股权证明、DPOS授权股权证明、Paxos、PBFT(实用拜占庭容错算法)、dBFT、DAG(有向无环图)

接下来我们主要说说常见的POW、POS、DPOS共识机制的原理及应用场景

概念:

工作量证明机制(Proof of work ),最早是一个经济学名词,指系统为达到某一目标而设置的度量方法。简单理解就是一份证明,用来确认你做过一定量的工作,通过对工作的结果进行认证来证明完成了相应的工作量。

工作量证明机制具有完全去中心化的优点,在以工作量证明机制为共识的区块链中,节点可以自由进出,并通过计算随机哈希散列的数值解争夺记账权,求得正确的数值解以生成区块的能力是节点算力的具体表现。

应用:

POW最著名的应用当属比特币。在比特币网络中,在Block的生成过程中,矿工需要解决复杂的密码数学难题,寻找到一个符合要求的Block Hash由N个前导零构成,零的个数取决于网络的难度值。这期间需要经过大量尝试计算(工作量),计算时间取决于机器的哈希运算速度。

而寻找合理hash是一个概率事件,当节点拥有占全网n%的算力时,该节点即有n/100的概率找到Block Hash。在节点成功找到满足的Hash值之后,会马上对全网进行广播打包区块,网络的节点收到广播打包区块,会立刻对其进行验证。

如果验证通过,则表明已经有节点成功解迷,自己就不再竞争当前区块,而是选择接受这个区块,记录到自己的账本中,然后进行下一个区块的竞争猜谜。网络中只有最快解谜的区块,才会添加的账本中,其他的节点进行复制,以此保证了整个账本的唯一性。

假如节点有任何的作弊行为,都会导致网络的节点验证不通过,直接丢弃其打包的区块,这个区块就无法记录到总账本中,作弊的节点耗费的成本就白费了,因此在巨大的挖矿成本下,也使得矿工自觉自愿的遵守比特币系统的共识协议,也就确保了整个系统的安全。

优缺点

优点:结果能被快速验证,系统承担的节点量大,作恶成本高进而保证矿工的自觉遵守性。

缺点:需要消耗大量的算法,达成共识的周期较长

概念:

权益证明机制(Proof of Stake),要求证明人提供一定数量加密货币的所有权。

权益证明机制的运作方式是,当创造一个新区块时,矿工需要创建一个“币权”交易,交易会按照预先设定的比例把一些币发送给矿工本身。权益证明机制根据每个节点拥有代币的比例和时间,依据算法等比例地降低节点的挖矿难度,从而加快了寻找随机数的速度。

应用:

2012年,化名Sunny King的网友推出了Peercoin(点点币),是权益证明机制在加密电子货币中的首次应用。PPC最大创新是其采矿方式混合了POW及POS两种方式,采用工作量证明机制发行新币,采用权益证明机制维护网络安全。

为了实现POS,Sunny King借鉴于中本聪的Coinbase,专门设计了一种特殊类型交易,叫Coinstake。

上图为Coinstake工作原理,其中币龄指的是货币的持有时间段,假如你拥有10个币,并且持有10天,那你就收集到了100天的币龄。如果你使用了这10个币,币龄被消耗(销毁)了。

优缺点:

优点:缩短达成共识所需的时间,比工作量证明更加节约能源。

缺点:本质上仍然需要网络中的节点进行挖矿运算,转账真实性较难保证

概念:

授权股权证明机制(Delegated Proof of Stake),与董事会投票类似,该机制拥有一个内置的实时股权人投票系统,就像系统随时都在召开一个永不散场的股东大会,所有股东都在这里投票决定公司决策。

授权股权证明在尝试解决传统的PoW机制和PoS机制问题的同时,还能通过实施科技式的民主抵消中心化所带来的负面效应。基于DPoS机制建立的区块链的去中心化依赖于一定数量的代表,而非全体用户。在这样的区块链中,全体节点投票选举出一定数量的节点代表,由他们来代理全体节点确认区块、维持系统有序运行。

同时,区块链中的全体节点具有随时罢免和任命代表的权力。如果必要,全体节点可以通过投票让现任节点代表失去代表资格,重新选举新的代表,实现实时的民主。

应用:

比特股(Bitshare)是一类采用DPOS机制的密码货币。通过引入了见证人这个概念,见证人可以生成区块,每一个持有比特股的人都可以投票选举见证人。得到总同意票数中的前N个(N通常定义为101)候选者可以当选为见证人,当选见证人的个数(N)需满足:至少一半的参与投票者相信N已经充分地去中心化。

见证人的候选名单每个维护周期(1天)更新一次。见证人然后随机排列,每个见证人按序有2秒的权限时间生成区块,若见证人在给定的时间片不能生成区块,区块生成权限交给下一个时间片对应的见证人。DPoS的这种设计使得区块的生成更为快速,也更加节能。

DPOS充分利用了持股人的投票,以公平民主的方式达成共识,他们投票选出的N个见证人,可以视为N个矿池,而这N个矿池彼此的权利是完全相等的。持股人可以随时通过投票更换这些见证人(矿池),只要他们提供的算力不稳定,计算机宕机,或者试图利用手中的权力作恶。

优缺点:

优点:缩小参与验证和记账节点的数量,从而达到秒级的共识验证

缺点:中心程度较弱,安全性相比POW较弱,同时节点代理是人为选出的,公平性相比POS较低,同时整个共识机制还是依赖于代币的增发来维持代理节点的稳定性。

区块链的共识机制是什么?

所谓共识区块链共识机制总结,简单理解就是指大家都达成一致的意思。

在区块链中,其实就是一个规则,每个节点都按照这个规则去确认各自的数据,最后维护整个网络的数据库保持一致。

如果以生活中的例子来举例的话,比如今天公司开个会议,但是由于老总不在,需要大家讨论决定一个项目做与否。

在这么一个群龙无首的环境中?

如何达成这个一致意见,最后形成一个决策来交给老总呢?这个过程就是需要共识机制发挥作用区块链共识机制总结了。

这时也许就有人提议,大家都发个言,表个态,最后大家进行投票,并且提议人就会把讨论发言过程记录,并且最后把举手投票结果登记后,将结果交给老总。

最后根据“如果投赞成票的人数多于反对票的,则项目就开干;否则就不干了”的规则,形成了决定结果。那么这个投票的规则就是共识机制。

在区块链世界里面,由于区块链运行的是一个分布式账本,或者是说分布式数据库,当一个新区块产生时,如何核对区块上面的每一笔账的准确性,让每台电脑上登记的账本都长期保持一致呢?

这就需要一个共识机制的存在了。因此共识机制,就是一套使区块链系统长期保持各个节点的账目(或者说数据)一致的机制,

区块链里,共识是区块链技术里的信任解决方案。

共识,是大家认可的,认可即生效,反对即出局。

就如区块链共识机制总结你经常违反社区机制,做一些损人利己的事。

那么你就会变成恶意节点寸步难行,个人信誉度降低。甚至被社区拉入黑名单,或者驱除出境。

区块链几大共识机制及优缺点

首先,没有一种共识机制是完美无缺的,各共识机制都有其优缺点,有些共识机制是为解决一些特定的问题而生。

1.pow( Proof of Work)工作量证明

一句话介绍:干的越多,收的越多。

依赖机器进行数学运算来获取记账权,资源消耗相比其他共识机制高、可监管性弱,同时每次达成共识需要全网共同参与运算,性能效率比较低,容错性方面允许全网50%节点出错。

优点:

1)算法简单,容易实现;

2)节点间无需交换额外的信息即可达成共识;

3)破坏系统需要投入极大的成本;

缺点:

1)浪费能源;

2)区块的确认时间难以缩短;

3)新的区块链必须找到一种不同的散列算法,否则就会面临比特币的算力攻击;

4)容易产生分叉,需要等待多个确认;

5)永远没有最终性,需要检查点机制来弥补最终性;

2.POS Proof of Stake,权益证明

一句话介绍:持有越多,获得越多。

主要思想是节点记账权的获得难度与节点持有的权益成反比,相对于PoW,一定程度减少了数学运算带来的资源消耗,性能也得到了相应的提升,但依然是基于哈希运算竞争获取记账权的方式,可监管性弱。该共识机制容错性和PoW相同。它是Pow的一种升级共识机制,根据每个节点所占代币的比例和时间,等比例的降低挖矿难度,从而加快找随机数的速度

优点:在一定程度上缩短了共识达成的时间;不再需要大量消耗能源挖矿。

缺点:还是需要挖矿,本质上没有解决商业应用的痛点;所有的确认都只是一个概率上的表达,而不是一个确定性的事情,理论上有可能存在其他攻击影响。例如,以太坊的DAO攻击事件造成以太坊硬分叉,而ETC由此事件出现,事实上证明了此次硬分叉的失败。

DPOS与POS原理相同,只是选了一些“人大代表”。

BitShares社区首先提出了DPoS机制。

与PoS的主要区别在于节点选举若干代理人,由代理人验证和记账。其合规监管、性能、资源消耗和容错性与PoS相似。类似于董事会投票,持币者投出一定数量的节点,代理他们进行验证和记账。

DPoS的工作原理为:

去中心化表示每个股东按其持股比例拥有影响力,51%股东投票的结果将是不可逆且有约束力的。其挑战是通过及时而高效的方法达到51%批准。为达到这个目标,每个股东可以将其投票权授予一名代表。获票数最多的前100位代表按既定时间表轮流产生区块。每名代表分配到一个时间段来生产区块。所有的代表将收到等同于一个平均水平的区块所含交易费的10%作为报酬。如果一个平均水平的区块含有100股作为交易费,一名代表将获得1股作为报酬。

网络延迟有可能使某些代表没能及时广播他们的区块,而这将导致区块链分叉。然而,这不太可能发生,因为制造区块的代表可以与制造前后区块的代表建立直接连接。建立这种与你之后的代表(也许也包括其后的那名代表)的直接连接是为了确保你能得到报酬。

该模式可以每30秒产生一个新区块,并且在正常的网络条件下区块链分叉的可能性极其小,即使发生也可以在几分钟内得到解决。

成为代表:

成为一名代表,你必须在网络上注册你的公钥,然后分配到一个32位的特有标识符。然后该标识符会被每笔交易数据的“头部”引用。

授权选票:

每个钱包有一个参数设置窗口,在该窗口里用户可以选择一个或更多的代表,并将其分级。一经设定,用户所做的每笔交易将把选票从“输入代表”转移至“输出代表”。一般情况下,用户不会创建特别以投票为目的的交易,因为那将耗费他们一笔交易费。但在紧急情况下,某些用户可能觉得通过支付费用这一更积极的方式来改变他们的投票是值得的。

保持代表诚实:

每个钱包将显示一个状态指示器,让用户知道他们的代表表现如何。如果他们错过了太多的区块,那么系统将会推荐用户去换一个新的代表。如果任何代表被发现签发了一个无效的区块,那么所有标准钱包将在每个钱包进行更多交易前要求选出一个新代表。

抵抗攻击:

在抵抗攻击上,因为前100名代表所获得的权力权是相同的,每名代表都有一份相等的投票权。因此,无法通过获得超过1%的选票而将权力集中到一个单一代表上。因为只有100名代表,可以想象一个攻击者对每名轮到生产区块的代表依次进行拒绝服务攻击。幸运的是,由于事实上每名代表的标识是其公钥而非IP地址,这种特定攻击的威胁很容易被减轻。这将使确定DDOS攻击目标更为困难。而代表之间的潜在直接连接,将使妨碍他们生产区块变得更为困难。

优点:大幅缩小参与验证和记账节点的数量,可以达到秒级的共识验证。

缺点:整个共识机制还是依赖于代币,很多商业应用是不需要代币存在的。

3.PBFT :Practical Byzantine Fault Tolerance,实用拜占庭容错

介绍:在保证活性和安全性(liveness safety)的前提下提供了(n-1)/3的容错性。

在分布式计算上,不同的计算机透过讯息交换,尝试达成共识;但有时候,系统上协调计算机(Coordinator / Commander)或成员计算机 (Member /Lieutanent)可能因系统错误并交换错的讯息,导致影响最终的系统一致性。

拜占庭将军问题就根据错误计算机的数量,寻找可能的解决办法,这无法找到一个绝对的答案,但只可以用来验证一个机制的有效程度。

而拜占庭问题的可能解决方法为:

在 N ≥ 3F + 1 的情况下一致性是可能解决。其中,N为计算机总数,F为有问题计算机总数。信息在计算机间互相交换后,各计算机列出所有得到的信息,以大多数的结果作为解决办法。

1)系统运转可以脱离币的存在,pbft算法共识各节点由业务的参与方或者监管方组成,安全性与稳定性由业务相关方保证。

2)共识的时延大约在2~5秒钟,基本达到商用实时处理的要求。

3)共识效率高,可满足高频交易量的需求。

缺点:

1)当有1/3或以上记账人停止工作后,系统将无法提供服务;

2)当有1/3或以上记账人联合作恶,且其它所有的记账人被恰好分割为两个网络孤岛时,恶意记账人可以使系统出现分叉,但是会留下密码学证据

下面说两个国产的吧~

4.dBFT: delegated BFT 授权拜占庭容错算法

介绍:小蚁采用的dBFT机制,是由权益来选出记账人,然后记账人之间通过拜占庭容错算法来达成共识。

此算法在PBFT基础上进行了以下改进:

将C/S架构的请求响应模式,改进为适合P2P网络的对等节点模式;

将静态的共识参与节点改进为可动态进入、退出的动态共识参与节点;

为共识参与节点的产生设计了一套基于持有权益比例的投票机制,通过投票决定共识参与节点(记账节点);

在区块链中引入数字证书,解决了投票中对记账节点真实身份的认证问题。

优点:

1)专业化的记账人;

2)可以容忍任何类型的错误;

3)记账由多人协同完成,每一个区块都有最终性,不会分叉;

4)算法的可靠性有严格的数学证明;

缺点:

1)当有1/3或以上记账人停止工作后,系统将无法提供服务;

2)当有1/3或以上记账人联合作恶,且其它所有的记账人被恰好分割为两个网络孤岛时,恶意记账人可以使系统出现分叉,但是会留下密码学证据;

以上总结来说,dBFT机制最核心的一点,就是最大限度地确保系统的最终性,使区块链能够适用于真正的金融应用场景。

5.POOL验证池

基于传统的分布式一致性技术,加上数据验证机制。

优点:不需要代币也可以工作,在成熟的分布式一致性算法(Pasox、Raft)基础上,实现秒级共识验证。

缺点:去中心化程度不如bictoin;更适合多方参与的多中心商业模式。

写到这里,本文关于区块链共识机制总结和区块链共识机制主要解决了哪两个问题的介绍到此为止了,如果能碰巧解决你现在面临的问题,如果你还想更加了解这方面的信息,记得收藏关注本站。

标签: #区块链共识机制总结

  • 评论列表

留言评论