区块链中密码学问题 区块链 密码法

皕利分享 169 0

本篇文章给大家谈谈区块链中密码学问题,以及区块链 密码法对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

区块链中现代密码学

1983年 - David Chaum描述区块链中密码学问题的盲签

1997年 - Adam Back发明的HashCash(工作证明制度的一个例子)

2001年 - Ron Rivest,Adi Shamir和Yael Tauman向加密社区提出了环签名

2004年 - Patrick P. Tsang和Victor K.提出使用环签名系统进行投票和电子现金;

2008年 - 由Satoshi Nakamoto出版的Bitcoin白皮书

2011年 - 比特币系统中的匿名分析,Fergal Reid和Martin Harrigan

2012 - 目的地址比特币匿名(CryptoNote中的一次性地址)。

安全多方计算起源于1982年姚期智的百万富翁问题。后来Oded Goldreich有比较细致系统的论述。

姚氏百万富翁问题是由华裔计算机科学家、图灵奖获得者姚启智教授首先提出的。该问题表述为区块链中密码学问题:两个百万富翁Alice和Bob想知道他们两个谁更富有,但他们都不想让对方知道自己财富的任何信息。该问题有一些实际应用:假设Alice希望向Bob购买一些商品,但她愿意支付的最高金额为x元;Bob希望的最低卖出价为y元。Alice和Bob都非常希望知道x与y哪个大。如果xy,他们都可以开始讨价还价;如果zy,他们就不用浪费口舌。但他们都不想告诉对方自己的出价,以免自己在讨价还价中处于不利地位。

该方案用于对两个数进行比较,以确定哪一个较大。Alice知道一个整数i;Bob知道一个整数j, Alice与B0b希望知道究竟i=j还是ji,但都不想让对方知道自己的数。为简单起见,假设j与i的范围为[1,100】。Bob有一个公开密钥Eb和私有密钥Db。

安全多方计算(Secure Multi-Party Computation)的研究主要是针对无可信第三方的情况下, 如何安全地计算一个约定函数的问题. 安全多方计算在电子选举、电子投票、电子拍卖、秘密共享、门限签名等场景中有着重要的作用。

同态加密(Homomorphic Encryption)是很久以前密码学界就提出来的一个Open Problem。早在1978年,Ron Rivest, Leonard Adleman, 以及Michael L. Dertouzos就以银行为应用背景提出了这个概念[RAD78]。对,你没有看错,Ron Rivest和Leonard Adleman分别就是著名的RSA算法中的R和A。

什么是同态加密区块链中密码学问题?提出第一个构造出全同态加密(Fully Homomorphic Encryption)[Gen09]的Craig Gentry给出的直观定义最好:A way to delegate processing of your data, without giving away access to it.

这是什么意思呢?一般的加密方案关注的都是数据存储安全。即,我要给其他人发个加密的东西,或者要在计算机或者其他服务器上存一个东西,我要对数据进行加密后在发送或者存储。没有密钥的用户,不可能从加密结果中得到有关原始数据的任何信息。只有拥有密钥的用户才能够正确解密,得到原始的内容。我们注意到,这个过程中用户是不能对加密结果做任何操作的,只能进行存储、传输。对加密结果做任何操作,都将会导致错误的解密,甚至解密失败。

同态加密方案最有趣的地方在于,其关注的是数据处理安全。同态加密提供了一种对加密数据进行处理的功能。也就是说,其他人可以对加密数据进行处理,但是处理过程不会泄露任何原始内容。同时,拥有密钥的用户对处理过的数据进行解密后,得到的正好是处理后的结果。

有点抽象?我们举个实际生活中的例子。有个叫Alice的用户买到了一大块金子,她想让工人把这块金子打造成一个项链。但是工人在打造的过程中有可能会偷金子啊,毕竟就是一克金子也值很多钱的说… 因此能不能有一种方法,让工人可以对金块进行加工(delegate processing of your data),但是不能得到任何金子(without giving away access to it)?当然有办法啦,Alice可以这么做:Alice将金子锁在一个密闭的盒子里面,这个盒子安装了一个手套。工人可以带着这个手套,对盒子内部的金子进行处理。但是盒子是锁着的,所以工人不仅拿不到金块,连处理过程中掉下的任何金子都拿不到。加工完成后。Alice拿回这个盒子,把锁打开,就得到了金子。

这里面的对应关系是:盒子:加密算法盒子上的锁:用户密钥将金块放在盒子里面并且用锁锁上:将数据用同态加密方案进行加密加工:应用同态特性,在无法取得数据的条件下直接对加密结果进行处理开锁:对结果进行解密,直接得到处理后的结果同态加密哪里能用?这几年不是提了个云计算的概念嘛。同态加密几乎就是为云计算而量身打造的区块链中密码学问题!我们考虑下面的情景:一个用户想要处理一个数据,但是他的计算机计算能力较弱。这个用户可以使用云计算的概念,让云来帮助他进行处理而得到结果。但是如果直接将数据交给云,无法保证安全性啊!于是,他可以使用同态加密,然后让云来对加密数据进行直接处理,并将处理结果返回给他。这样一来:用户向云服务商付款,得到了处理的结果;云服务商挣到了费用,并在不知道用户数据的前提下正确处理了数据;

聚合签名由Boneh等人提出,主要是通过聚合多个签名为一个签名,来提高签名与验证的效率。要对多个用户的数据进行签名,聚合签名能够极大地降低签名计算复杂度。CL就是聚合签名。

零知识证明过程有两个参与方,一方叫证明者,一方叫验证者。证明者掌握着某个秘密,他想让验证者相信他掌握着秘密,但是又不想泄漏这个秘密给验证者。

双方按照一个协议,通过一系列交互,最终验证者会得出一个明确的结论,证明者是或不掌握这个秘密。

对于比特币的例子,一笔转帐交易合法与否,其实只要证明三件事:

发送的钱属于发送交易的人

发送者发送的金额等于接收者收到金额

发送者的钱确实被销毁了

整个证明过程中,矿工其实并不关心具体花掉了多少钱,发送者具体是谁,接受者具体是谁。矿工只关心系统的钱是不是守恒的。

zcash 就是用这个思路实现了隐私交易。

零知识证明的三条性质对应:

(1)完备性。如果证明方和验证方都是诚实的,并遵循证明过程的每一步,进行正确的计算,那么这个证明一定是成功的,验证方一定能够接受证明方。

(2)合理性。没有人能够假冒证明方,使这个证明成功。

(3)零知识性。证明过程执行完之后,验证方只获得了“证明方拥有这个知识”这条信息,而没有获得关于这个知识本身的任何一点信息。

只有环成员,没有管理者,不需要环成员之间的合作,签名者利用自己的私钥和集合中其他成员的公钥就能独立的进行签名,不需要其他人的帮助,集合中的其他成员可能不知道自己被包含在了其中。

环签名可以被用作成一种泄露秘密的方式,例如,可以使用环形签名来提供来自“白宫高级官员”的匿名签名,而不会透露哪个官员签署了该消息。 环签名适用于此应用程序,因为环签名的匿名性不能被撤销,并且因为用于环签名的组可以被即兴创建。

1)密钥生成。为环中每个成员产生一个密钥对(公钥PKi,私钥SKi)

2)签名。签名者用自己的私钥和任意n个环成员的公钥为消息m生成签名a

3)签名验证。签名者根据环签名和消息m,验证签名是否是环中成员所签。如果有效就接收,如果无效就丢弃。

群签名的一般流程

盲数字签名(Blind Signature)简称盲签名——是一种数字签名的方式,在消息内容被签名之前,对于签名者来说消息内容是不可见的。1982年大卫·乔姆首先提出了盲签名的概念。盲签名因为具有盲性这一特点,可以有效保护所签署消息的具体内容,所以在电子商务和电子选举等领域有着广泛的应用。

类比例子:对文件签名就是通过在信封里放一张复写纸,签名者在信封上签名时,他的签名便透过复写纸签到文件上。

所谓盲签名,就是先将隐蔽的文件放进信封里,而除去盲因子的过程就是打开这个信封,当文件在一个信封中时,任何人不能读它。对文件签名就是通过在信封里放一张复写纸,签名者在信封上签名时,他的签名便透过复写纸签到文件上。

一般来说,一个好的盲签名应该具有以下的性质:

不可伪造性。除了签名者本人外,任何人都不能以他的名义生成有效的盲签名。这是一条最基本的性质。

不可抵赖性。签名者一旦签署了某个消息,他无法否认自己对消息的签名。

盲性。签名者虽然对某个消息进行了签名,但他不可能得到消息的具体内容。

不可跟踪性。一旦消息的签名公开后,签名者不能确定自己何时签署的这条消息。

满足上面几条性质的盲签名,被认为是安全的。这四条性质既是我们设计盲签名所应遵循的标准,又是我们判断盲签名性能优劣的根据。

另外,方案的可操作性和实现的效率也是我们设计盲签名时必须考虑的重要

因素。一个盲签名的可操作性和实现速度取决于以下几个方面:

1,密钥的长度;

2,盲签名的长度;

3,盲签名的算法和验证算法。

盲签名具体步骤

1,接收者首先将待签数据进行盲变换,把变换后的盲数据发给签名者。

2,经签名者签名后再发给接收者。

3,接收者对签名再作去盲变换,得出的便是签名者对原数据的盲签名。

4,这样便满足了条件①。要满足条件②,必须使签名者事后看到盲签名时不能与盲数据联系起来,这通常是依靠某种协议来实现的。

区块链的密码技术有

密码学技术是区块链技术的核心。区块链的密码技术有数字签名算法和哈希算法。

数字签名算法

数字签名算法是数字签名标准的一个子集,表示区块链中密码学问题了只用作数字签名的一个特定的公钥算法。密钥运行在由SHA-1产生的消息哈希:为了验证一个签名,要重新计算消息的哈希,使用公钥解密签名然后比较结果。缩写为DSA。

数字签名是电子签名的特殊形式。到目前为止,至少已经有 20 多个国家通过法律 认可电子签名,其中包括欧盟和美国,区块链中密码学问题我国的电子签名法于 2004 年 8 月 28 日第十届全 国人民代表大会常务委员会第十一次会议通过。数字签名在 ISO 7498-2 标准中定义为: “附加在数据单元上的一些数据,或是对数据单元所作的密码变换,这种数据和变换允许数据单元的接收者用以确认数据单元来源和数据单元的完整性,并保护数据,防止被人(例如接收者)进行伪造”。数字签名机制提供了一种鉴别方法,以解决伪造、抵赖、冒充和篡改等问题,利用数据加密技术、数据变换技术,使收发数据双方能够满足两个条件:接收方能够鉴别发送方所宣称的身份;发送方以后不能否认其发送过该数据这一 事实。

数字签名是密码学理论中的一个重要分支。它的提出是为了对电子文档进行签名,以 替代传统纸质文档上的手写签名,因此它必须具备 5 个特性。

(1)签名是可信的。

(2)签名是不可伪造的。

(3)签名是不可重用的。

(4)签名的文件是不可改变的。

(5)签名是不可抵赖的。

哈希(hash)算法

Hash,就是把任意长度的输入(又叫做预映射, pre-image),通过散列算法,变换成固定长度的输出,该输出就是散列值。这种转换是一种压缩映射,其中散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,但是不可逆向推导出输入值。简单的说就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数。

哈希(Hash)算法,它是一种单向密码体制,即它是一个从明文到密文的不可逆的映射,只有加密过程,没有解密过程。同时,哈希函数可以将任意长度的输入经过变化以后得到固定长度的输出。哈希函数的这种单向特征和输出数据长度固定的特征使得它可以生成消息或者数据。

以比特币区块链为代表,其中工作量证明和密钥编码过程中多次使用了二次哈希,如SHA(SHA256(k))或者RIPEMD160(SHA256(K)),这种方式带来的好处是增加了工作量或者在不清楚协议的情况下增加破解难度。

以比特币区块链为代表,主要使用的两个哈希函数分别是:

1.SHA-256,主要用于完成PoW(工作量证明)计算;

2.RIPEMD160,主要用于生成比特币地址。如下图1所示,为比特币从公钥生成地址的流程。

第4课 区块链中的密码学 学习总结

这是加入公Ulord深度学习第四课区块链中密码学问题,杨博士给大家主讲区块链中的密码学问题,本期课程令让区块链中密码学问题我弄懂了一个一直困扰着我的关于公钥和私钥的问题,区块链中密码学问题他们之间到底是什么关系?再这次学习中我得到了答案,现在我把我学习到的内容跟大家分享一下。

区块链里的公钥和私钥,是非对称加密里的两个基本概念。

公钥与私钥,是通过一种算法得到的一个密钥对,公钥是密钥对中公开的部分,私钥是非公开的部分。公钥通常用于加密会话,就是消息或者说信息,同时,也可以来用于验证用私钥签名的数字签名。

私钥可以用来进行签名,用对应的公钥来进行验证。通过这种公开密钥体制得到的密钥对能够保证在全世界范围内是唯一的。使用这个密钥对的时候,如果用其中一个密钥加密数据,则必须用它对应的另一个密钥来进行解密。

比如说用公钥加密的数据就必须用私钥才能解密,如果用私钥进行加密,就必须要对应的公钥才能解密,否则无法成功解密。另外,在比特币的区块链中,则是通过私钥来计算出公钥,通过公钥来计算出地址,而这个过程是不可逆的。

写到这里,本文关于区块链中密码学问题和区块链 密码法的介绍到此为止了,如果能碰巧解决你现在面临的问题,如果你还想更加了解这方面的信息,记得收藏关注本站。

标签: #区块链中密码学问题

  • 评论列表

留言评论