本篇文章主要给网友们分享区块链遍历的知识,其中更加会对区块链查找进行更多的解释,如果能碰巧解决你现在面临的问题,记得关注本站!
区块链是怎样防止数据篡改的?
区块链是分布式数据存储、点对点传输、共识机制、加密算法等计算机技术的新型应用模式。
跟传统的分布式存储有所不同,区块链的分布式存储的独特性主要体现在两个方面:一是区块链每个节点都按照块链式结构存储完整的数据,传统分布式存储一般是将数据按照一定的规则分成多份进行存储。二是区块链每个节点存储都是独立的、地位等同的,依靠共识机制保证存储的一致性,而传统分布式存储一般是通过中心节点往其他备份节点同步数据。
没有任何一个节点可以单独记录账本数据,从而避免了单一记账人被控制或者被贿赂而记假账的可能性。也由于记账节点足够多,理论上讲除非所有的节点被破坏,否则账目就不会丢失,从而保证了账目数据的安全性。
存储在区块链上的交易信息是公开的,但是账户身份信息是高度加密的,只有在数据拥有者授权的情况下才能访问到,从而保证了数据的安全和个人的隐私。
区块链提出了四种不同的共识机制,适用于不同的应用场景,在效率和安全性之间取得平衡。
基于以上特点,这种数据存储技术是可以完美防止数据被篡改的可能性,在现实中也可以运用到很多领域之中,比我们的电子存证技术在电子合同签署上提供了更安全可靠的保证。
区块链技术
背景:比特币诞生之后,发现该技术很先进,才发现了区块链技术。比特币和区块链技术同时被发现。
1.1 比特币诞生的目的:
①货币交易就有记录,即账本;
②中心化机构记账弊端——可篡改;易超发
比特币解决第一个问题:防篡改——hash函数
1.2 hash函数(加密方式)
①作用:将任意长度的字符串,转换成固定长度(sha256)的输出。输出也被称为hash值。
②特点:很难找到两个不同的x和y,使得h(x)=h(y)。
③应用:md5文件加密
1.3 区块链
①定义
区块:将总账本拆分成区块存储
区块链:在每个区块上,增加区块头。其中记录父区块的hash值。通过每个区块存储父区块的hash值,将所有的区块按照顺序连接起来,形成区块链。
②区块链如何防止交易记录被篡改
形成区块链后,篡改任一交易,会导致该交易区块hash值和其子区块中不同,发现篡改。
即使继续篡改子区块头中hash值,会导致子区块hash值和孙区块中不同,发现篡改。
1.4 区块链本质
①比特币和区块链本质:一个人人可见的大账本,只记录交易。
②核心技术:通过密码学hash函数+数据结构,保证账本记录不可篡改。
③核心功能:创造信任。法币依靠政府公信力,比特币依靠技术。
1.5如何交易
①进行交易,需要有账号和密码,对应公钥和私钥
私钥:一串256位的二进制数字,获取不需要申请,甚至不需要电脑,自己抛硬币256次就生成了私钥
地址由私钥转化而成。地址不能反推私钥。
地址即身份,代表了在比特币世界的ID。
一个地址产生之后,只有进入区块链账本,才能被大家知道。
②数字签名技术
签名函数sign(张三的私钥,转账信息:张三转10元给李四) = 本次转账签名
验证韩式verify(张三的地址,转账信息:张三转10元给李四,本次转账签名) = True
张三通过签名函数sign(),使用自己的私钥对本次交易进行签名。
任何人可以通过验证韩式vertify(),来验证此次签名是否有由持有张三私钥的张三本人发出。是返回true,反之为false。
sign()和verify()由密码学保证不被破解。·
③完成交易
张三将转账信息和签名在全网供内部。在账户有余额的前提下,验证签名是true后,即会记录到区块链账本中。一旦记录,张三的账户减少10元,李四增加10元。
支持一对一,一对多,多对已,多对多的交易方式。
比特币世界中,私钥就是一切!!!
1.6中心化记账
①中心化记账优点:
a.不管哪个中心记账,都不用太担心
b.中心化记账,效率高
②中心化记账缺点:
a 拒绝服务攻击
b 厌倦后停止服务
c 中心机构易被攻击。比如破坏服务器、网络,监守自盗、法律终止、政府干预等
历史 上所有有中心化机构的机密货币尝试都失败了。
比特币解决第二个问题:如何去中心化
1.7 去中心化记账
①去中心化:人人都可以记账。每个人都可以保留完整的账本。
任何人都可以下载开源程序,参与P2P网络,监听全世界发送的交易,成为记账节点,参与记账。
②去中心化记账流程
某人发起一笔交易后,向全网广播。
每个记账节点,持续监听、持续全网交易。收到一笔新交易,验证准确性后,将其放入交易池并继续向其它节点传播。
因为网络传播,同一时间不同记账节点的交一次不一定相同。
每隔10分钟,从所有记账节点当中,按照某种方式抽取1名,将其交易池作为下一个区块,并向全网广播。
其它节点根据最新的区块中的交易,删除自己交易池中已经被记录的交易,继续记账,等待下一次被选中。
③去中心化记账特点
每隔10分钟产生一个区块,但不是所有在这10分钟之内的交易都能记录。
获得记账权的记账节点,将得到50个比特币的奖励。每21万个区块(约4年)后,奖励减半。总量约2100万枚,预计2040年开采完。
记录一个区块的奖励,也是比特币唯一的发行方式。
④如何分配记账权:POW(proof of work) 方式
记账几点通过计算一下数学题,来争夺记账权。
找到某随即数,使得一下不等式成立:
除了从0开始遍历随机数碰运气之外,没有其它解法,解题的过程,又叫做挖矿。
谁先解对,谁就得到记账权。
某记账节点率先找到解,即向全网公布。其他节点验证无误之后,在新区块之后重新开始新一轮的计算。这个方式被称为POW。
⑤难度调整
每个区块产生的时间并不是正好10分钟
随着比特币发展,全网算力不算提升。
为了应对算力的变化,每隔2016个区块(大约2周),会加大或者减少难度,使得每个区块产生的平均时间是10分钟。
#欧易OKEx# #比特币[超话]# #数字货币#
什么是区块链?挖矿是做什么?详细介绍区块链和虚拟货币
在比特币刚发行的时候人们发现了,它去中心化,不受任何中心管制;它完全开放,除了交易信息加密之外整个系统信息高度透明,技术都是开源的;安全性,只要不能控制全部节点的%51,就无法肆意修改数据,这使得它相对安全;独立性,整个模式和比特币不依赖任何第三方,所有节点都在系统内验证、交换数据,不受任何干预
我们这里详细解释什么是区块链技术,说白了就是区块+链,那什么是 “区块” ?什么又是 “链” 呢?
区块就是一个账本交易记账由分布在不同地方的多个节点共同完成,而且每一个节点记录的是完整的账目,因此它们都可以参与监督交易合法性,同时也可以共同为其作证
每一个区块包含了前一个区块的加密散列、相应时间戳记以及交易资料(通常用默克尔树(Merkle tree)算法计算的散列值表示),这样的设计使得区块内容具有难以篡改的特性。用区块链技术所串接的分布式账本能让两方有效记录交易,且可永久查验此交易。
哈希函数h()的作用:将任意长度的字符串,转换成固定长度(例如256位)的输出。输出也被称为 哈希值 ,这个输出不可逆
很难找到两个不同的x和y,使得h(x) = h(y),也就是说两个不同的输入,会有不同的输出。理论上说两个不同的输入可能会有不同的输出,但这几乎不可能,比方说一个无限的空间映射到一个有限的空间,肯定存在多对一的情况,理论存在,但没有任何规律,保证你无法通过数学上的任何推断来找到这个结果,为什么这里是256位呢?不是更长的呢?因为256位已经足够安全。
将账本拆分成块,比如一个本子的一张纸就是一个区块,每个区块记录一段时间内的交易,列如10分钟
我们把每张纸比作一个一个 区块 ,在每个区块的上面增加一部分内容我们把它叫做 区块头 ,其中记录父区块的哈希值,通过每个区块储存父区块的哈希值,将所有区块按顺利连接起来,形成区块链
把 1区块 的哈希值记录到 2区块 的区块头上,如此操作每个区块的区块头都记录父区块的哈希值,每个区块都按照顺序链接起来了,这就叫做区块链。第一个区块没有区块头,又被称之为创世区块
区块链是一个账本,在账本上只有发生了交易你的账户上的钱才会变多和变少,需要进行交易那么首先需要一个账号和密码,就像你的银行卡有账号和密码别人就可以对你进行一个转账,在区块账本上这个账号密码就是公钥和私钥
老王(已有私钥,公钥),想转给张10个BTC,需要一些操作
证明是老王本人发出转账 签名函数Sign (老王的私钥 + 转账信息:老王转给张三10 BTC)=本次专账签名
验证是老王本人发出转账 验证函数Verify (老王的地址 + 转账详细:老王转给张三10 BTC + 本次转账签名)=true
一旦转账记录到区块从此谁也不能改变它,张三增加10 BTC,老王则相应减少10 BTC,整个操作都是自动的,比如你的钱包app它会帮你去做这样的事情,app知道你的私钥,你告诉钱包交易内容,钱包签名向全网公布,等待其他人来验证这笔交易
中心化记账效率会更高,银行、政府或者支付宝帮你记账,都很可靠,因为他们都无法动你的钱,除非它们有你的私钥
中心化记账存在一些缺点
去中心化人人都可以记账,每个人可以保留一个完整的账本。任何人都可以下载开源程序,参与比特币的p2p网络,监听来自全世界发送的交易,成为记账节点,参与记账,假设小逸发布了一笔交易向全网广播,A记账节点监听到了这笔交易,A验证了这笔交易位true之后放入交易池继续向其它节点传播,因为是网络传播,同一时间不同记账节点的交易池不一定相同,每10分钟,从所有记账节点当中,按照某个方式抽取一名,验证这个节点的交易为true之后,之后将这个选中的节点交易池中的交易记录与自己(A)节点的交易池中的交易记录对比一下,对比完之后会将自己交易池中已经被选中记账节点记录的交易删掉,别的不动继续记账等待下一次被选中,每隔10分钟就是一个循环,这个10分钟所有记账节点正常记账,10分钟之后再选出一个节点把它交易池当中的交易作为一个新的区块,这个区块来自所有记账节点中我任意选择的一个记账节点的交易池,如此不断循环往复
交易并不是被记录就完成,只有当这笔交易变成了某一个区块,这笔交易才算是真正的完成。这就是去中心化的一个记账的完整的流程,你的交易并不会第一时间被记录,因为p2p网络传播需要时间,如果被选中区块的节点还没有接受到你的交易,交易就没有完成。每10分钟产生一个区块,但不是所有在10分钟内的交易都能记录。10分钟只是一个平均值
去中心化记账的特点,有记账权的记账节点,每十分钟被选中的节点它会获得50BTC奖励,每21万个区块差不多4年,奖励减半,比特币自发行已经两次减半,那么每十分钟产生一个新的区块这个记账节点得到的奖励是10.5BTC,每隔4年减半那么可以算出BTC的总量大约为2100万枚,预计2040年开采完,记录一个区块的奖励也是比特币唯一的发行方式,当BTC开采完之后,记账节点可以获得的收益就只有交易的手续费了
记账节点通过题目来争夺记账权,
找到某位随机数使得等式不成立
SHA256哈希函数 (随机数 + 父区块哈希值 + 交易池中的交易) 某一指定值)
从0开始遍历随机数碰运气之外,没有其它解法,解题的过程,又叫做 挖矿 ,所以解这个题目的记账节点又被称之为 矿工 ,你遍历随机数越快你拿到这个记账权的可能性就越大,这个遍历速度就被矿老板们称之为 算力 ,为了得到这个算力,矿老板们就会购买更多且更高算力的矿机
谁先解对,谁就得到记账权。A记账节点率先找到解,即向全网公布,其他节点验证无误之后,A节点就获得了这个区块,获得12.5个BTC的收益,在新区块之后重新开始新一轮计算。这个方式被称之为(POW)分配记账权
一般大约10分钟解出这个随机数,10并不绝对,因为解开这个题目的过程本就是个碰运气的过程,未来应对算力的变化,比特币每隔2016个区块,大约两周,会加大或减小难度,使得平均产生区块的时间是十分钟
每一个区块包含了前一个区块的加密散列、相应时间戳记以及交易资料(通常用默克尔树(Merkle tree)算法计算的散列值表示),这样的设计使得区块内容具有难以篡改的特性。用区块链技术所串接的分布式账本能让两方有效记录交易,且可永久查验此交易。
和传统存储的数据不同的是,区块链每个节点都按照块链式结构存储完整的数据,区块链每个节点存储都是独立的、地位等同的,依靠共识机制保证存储的一致性,而传统分布式存储一般是通过中心节点往其他备份节点同步数据。
麻将作为中国传统的区块链项目,四个矿工一组,先碰撞出13个数字正确哈希值的矿工可以获得记账权并得到奖励。
很多人讲区块链是骗局比特币是骗局,这也许是个骗局,但是这个技术已经被广泛地承认和应用,区块链涉及的密码学知识一般人再借几个脑子给你你也搞不懂,在一个相对理性的角度看待问题最重要,千万别听风就是雨。
这门技术有着不可思议的地方 在一个没有中心没有监管的情况下保持着绝对的秩序 这个只需由大家的共识建立的信任,比特币创造了这个共识,在区块链的世界里每个人都是公平平等的。
区块链的加密技术
数字加密技能是区块链技能使用和开展区块链遍历的关键。一旦加密办法被破解区块链遍历,区块链的数据安全性将受到挑战,区块链的可篡改性将不复存在。加密算法分为对称加密算法和非对称加密算法。区块链首要使用非对称加密算法。非对称加密算法中的公钥暗码体制依据其所依据的问题一般分为三类:大整数分化问题、离散对数问题和椭圆曲线问题。第一,引进区块链加密技能加密算法一般分为对称加密和非对称加密。非对称加密是指集成到区块链中以满意安全要求和所有权验证要求的加密技能。非对称加密通常在加密和解密进程中使用两个非对称暗码,称为公钥和私钥。非对称密钥对有两个特点:一是其间一个密钥(公钥或私钥)加密信息后,只能解密另一个对应的密钥。第二,公钥可以向别人揭露,而私钥是保密的,别人无法通过公钥计算出相应的私钥。非对称加密一般分为三种首要类型:大整数分化问题、离散对数问题和椭圆曲线问题。大整数分化的问题类是指用两个大素数的乘积作为加密数。由于素数的出现是没有规律的,所以只能通过不断的试算来寻找解决办法。离散对数问题类是指基于离散对数的困难性和强单向哈希函数的一种非对称分布式加密算法。椭圆曲线是指使用平面椭圆曲线来计算一组非对称的特殊值,比特币就采用区块链遍历了这种加密算法。非对称加密技能在区块链的使用场景首要包含信息加密、数字签名和登录认证。(1)在信息加密场景中,发送方(记为A)用接收方(记为B)的公钥对信息进行加密后发送给
B,B用自己的私钥对信息进行解密。比特币交易的加密就属于这种场景。(2)在数字签名场景中,发送方A用自己的私钥对信息进行加密并发送给B,B用A的公钥对信息进行解密,然后确保信息是由A发送的。(3)登录认证场景下,客户端用私钥加密登录信息并发送给服务器,服务器再用客户端的公钥解密认证登录信息。请注意上述三种加密计划之间的差异:信息加密是公钥加密和私钥解密,确保信息的安全性区块链遍历;数字签名是私钥加密,公钥解密,确保了数字签名的归属。认证私钥加密,公钥解密。以比特币体系为例,其非对称加密机制如图1所示:比特币体系一般通过调用操作体系底层的随机数生成器生成一个256位的随机数作为私钥。比特币的私钥总量大,遍历所有私钥空间获取比特币的私钥极其困难,所以暗码学是安全的。为便于辨认,256位二进制比特币私钥将通过SHA256哈希算法和Base58进行转化,构成50个字符长的私钥,便于用户辨认和书写。比特币的公钥是私钥通过Secp256k1椭圆曲线算法生成的65字节随机数。公钥可用于生成比特币交易中使用的地址。生成进程是公钥先通过SHA256和RIPEMD160哈希处理,生成20字节的摘要成果(即Hash160的成果),再通过SHA256哈希算法和Base58转化,构成33个字符的比特币地址。公钥生成进程是不可逆的,即私钥不能从公钥推导出来。比特币的公钥和私钥通常存储在比特币钱包文件中,其间私钥最为重要。丢掉私钥意味着丢掉相应地址的所有比特币财物。在现有的比特币和区块链体系中,现已依据实践使用需求衍生出多私钥加密技能,以满意多重签名等愈加灵敏杂乱的场景。
以太坊技术系列-以太坊数据结构
本篇文章和大家介绍一下以太坊区块链遍历的数据结构,上篇文章区块链遍历我们提到,以太坊为了实现智能合约这一功能,使用了基于账户的模型。我们来看看以太坊中数据结构。
既然是基于账户的模型,我们需要通过账户地址找到账户的状态。就像通过银行卡号可以找到区块链遍历你在银行中的各种信息一样。最简单的想法当然是一个简单的哈希表 key是账户地址 value是账户状态。但这里有个问题解决不了。
轻节点如何校验账户合法性区块链遍历?
上篇我们说过,区块链中有2类节点,全节点和轻节点,轻节点只会存储block header,所以轻节点如何才能校验账号是否合法呢?
这个思路和我们平时用的md5校验一致,我们会对区块内的信息进行hash运算从而得出区块内信息唯一确定的值,区块链所有节点中这个值都是相同的。
在这个过程中我们用到了一种数据结构Merkle Tree(哈希树),我们先看下Merkle Tree(哈希树)的示意图。
上篇文章说到区块链中的链表(哈希链)和我们平时常见链表不同的是将指针从地址改为了hash指,这里也一样,哈希树和二叉树的区别有2个
1.将地址改为了哈希值
2.只有叶子节点存储数据
回到之前的问题轻节点是如何校验1个账户或交易是否是在链上的呢?
整个流程如上图所示
1.轻节点需要判断1个账号是否合法
2.轻节点由于只存储block header,所以拿到1个账号的时候会向全节点发出请求
3.全节点存储了所有账户状态,将账户路径中的需要计算用到的hash值返回给轻节点
4.轻节点本地进行计算根hash值,如果计算结果和自己存储一致则账户合法,不一致则不合法。
那以太坊中的账户信息的数据结构就是这样吗?
直接用这样的数据结构来存储账户信息会有2个问题
查找困难
生成hash值不确定
第1个问题应该比较容易发现,在这个树中寻找1个账号需要的复杂度是O(n),因为没有任何顺序。
第2个问题其实也是因为无序导致的,无序的组合每个节点针对同一批账户生成的hash值不一致,这就导致无法达成共识。
既然2个问题都和顺序有关,那我们类似二叉排序树一样,使用哈希排序树是不是就可以解决问题了呢?
使用排序树后会带来另外1个问题
插入困难
因为要维持树是有序的,很可能带来树结构的很大变动。
以太坊中使用了另外一种数据结构字典树。和哈希树不同,字典树应该是很多地方都有使用。我们简单来看下字典树的结构。
字典树能够较好地解决哈希树的2个缺点1.查找困难 2.生成的hash值不确定以及排序二叉树的1个缺点 插入困难。
但字典树我们可以看到可能树的深度可能由于部分元素导致整棵树深度非常深。
这时我们可以进一步优化,将相同路径进行压缩。这就是压缩字典树。
将哈希树和压缩字典树结合,就可以得到以太坊存储账户的最终数据结构-MPT。
将压缩字典树里面的指针从地址改为指针,并且将数据存储在叶子节点中即可。
介绍完状态树的数据结构,我们接下来讨论1个问题,区块中存储的账户状态是什么样的范围。有2种选择。
只保存当时区块中产生交易的账户状态。
保存全局所有的账户。
我们可以看下这2种方式,无非就是空间和时间的平衡,只保存当前区块产生的交易意味着是做懒加载(需要的时候才去寻找账户),在区块链中这个代价是非常大的,因为寻找的账户之前从未交易过,这样会遍历整个区块链。另外一种保存全局的账户方式虽然看起来空间消耗较大,但查找快捷,而且空间的问题我们可以通过其区块链遍历他方式优化。所以最终以太坊选择了第2种每个区块都报错全局所有账户的方式。
我们来看下以太坊中是如何保存状态树的。
可以看到以太坊中虽然每个区块都保存了全部账户,但是会将未发生变化的账户状态指向前1个节点,本身只存储发生变化的状态,这样可以较大程度优化空间占用。
介绍完以太坊中比较复杂的状态树后,我们继续来看看以太坊中的另外两棵树,交易树和收据树。
首先介绍一下,为什么需要交易树收据树。
1.交易树
虽然以太坊是基于账户的模型,但是就像银行不仅会存储银行卡的余额,还会存储卡中的每笔钱怎么来的以及怎么花的。交易树中就存储着当前区块中的包含的所有交易。
2.收据树
由于智能合约的引入增加了不少复杂性,所以以太坊用收据树存储着一些交易操作的额外信息。比如交易过程中执行日志就包含在收据树中方便查询。收据树和交易树是一一对应的。每发生一次交易就会有一次收据。
和状态树不同交易树和收据树只维护当前区块内发生的交易,因为当时区块发生交易时不需要再去查找另外1个交易,也就之前需要可能遍历整个区块链的查找操作了。
由于以太坊中的出块速度较快,我们进行一些查询一些符合条件交易的时候会面临大量数据遍历困难的问题。收据树中引入了布隆过滤器可以帮助我们有效缓解这一困难。
布隆过滤器将大集合中每个元素进行hash运算映射到1个较小的集合,这时再来1个元素要判断是否在大集合的时候,不需要遍历整个大集合,而是去进行hash运算去小集合中寻找是否存在,如果不存在,肯定不在大集合中,如果存在则不能说明任何问题。
如上图所示,布隆过滤器只能证明某1个元素不在集合中,不能证明1个元素在结合中。
以太坊中如果我们要在较多区块中寻找某1个交易,则可以利用布隆过滤器,过滤掉肯定不存在目标交易的区块,然后进入收据树内继续利用布隆过滤器筛选,剩下的才是可能的目标交易的交易,进行一一比对即可。
我们介绍了以太坊的核心数据结构,状态树交易树收据树,他们都是使用相同的数据结构-哈希压缩字典树。但状态树是维护1颗全局账户树,交易树和收据树则是维护本区块内的交易或收据。
介绍完数据结构后,后面我们会用几篇文章来介绍以太坊中的一些核心算法,比如共识机制,挖矿算法等。
区块链在供应链金融中怎么使用?
在传统供应链金融中,融资难、融资成本高、融资流程繁琐一直是制约中小微企业做大做强的瓶颈之一。银行依赖于核心企业的控货能力和调节销售能力,出于风控的考虑,银行仅愿对核心企业有直接应付账款义务的上游供应商(限于一级供应商)提供保理业务,或对其下游经销商(一级供应商),提供预付款或者存货融资。这就导致了有巨大融资需求的二级、三级等供应商/经销商的需求得不到满足,供应链金融的业务量受到限制,而中小企业得不到及时的融资易导致产品质量问题,会伤害整个供应链体系。
解决这些问题则可以利用区块链技术去中心化、不可篡改、分布式账本的特性打造区块链供应链金融平台。
1.供应商和核心企业签订购销合同,供应商发货,核心企业出具入库单(收货确认),货款约定到货后1个月(账期)内结算。
2.供应商因为资金紧张,将应收款凭证(入库单等)抵押给银行。
3.银行通知核心企业,应收账款已经转给银行
4.核心企业确认转让业务
5.银行给供应商放款,在这个过程中,银行会根据贷款利率和需要承担的风险,收取供应商贷款费用。
6.核心企业在约定的付款日期,将资金支付给银行,整个应收凭证融资业务结束。
1. 核心企业签发应收凭证给分销商,分销商签收后表示签订了购销合同,核心企业发货。
2. 分销商因资金紧张需要向金融融资贷款。
3. 金融机构审核同意后把贷款的金额打给核心企业。
4.分销商卖掉货物后归还贷款和利息
写到这里,本文关于区块链遍历和区块链查找的介绍到此为止了,如果能碰巧解决你现在面临的问题,如果你还想更加了解这方面的信息,记得收藏关注本站。
标签: #区块链遍历
评论列表