今天给各位分享区块链建模的知识,其中也会对区块链模板进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
区块链技术发展现状与展望
区块链技术发展现状与展望
区块链技术起源于2008年由化名为 “中本聪” (Satoshi Nakamoto)的学者在密码学邮件组发表的奠基性论文《比特币:一种点对点电子现金系统》。近两年来,区块链技术的研究与应用呈现出爆发式增长态势,被认为是继大型机、个人电脑、互联网、移动/社交网络之后计算范式的第五次颠覆式创新,是人类信用进化史上继血亲信用、贵金属信用、央行纸币信用之后的第四个里程碑。区块链技术是下一代云计算的雏形,有望像互联网一样彻底重塑人类社会活动形态,并实现从目前的信息互联网向价值互联网的转变。区块链的技术特点
区块链具有去中心化、时序数据、集体维护、可编程和安全可信等特点。 去中心化:区块链数据的验证、记账、存储、维护和传输等过程均是基于分布式系统结构,采用纯数学方法而不是中心机构来建立分布式节点间的信任关系,从而形成去中心化的可信任的分布式系统; 时序数据:区块链采用带有时间戳的链式区块结构存储数据,从而为数据增加了时间维度,具有极强的可验证性和可追溯性; 集体维护:区块链系统采用特定的经济激励机制来保证分布式系统中所有节点均可参与数据区块的验证过程(如比特币的“挖矿”过程),并通过共识算法来选择特定的节点将新区块添加到区块链; 可编程:区块链技术可提供灵活的脚本代码系统,支持用户创建高级的智能合约、货币或其它去中心化应用; 安全可信:区块链技术采用非对称密码学原理对数据进行加密,同时借助分布式系统各节点的工作量证明等共识算法形成的强大算力来抵御外部攻击、保证区块链数据不可篡改和不可伪造,因而具有较高的安全性。区块链与比特币 比特币是迄今为止最为成功的区块链应用场景,区块链技术为比特币系统解决了数字加密货币领域长期以来所必需面对的双重支付问题和拜占庭将军问题。与传统中心机构(如中央银行)的信用背书机制不同的是,比特币区块链形成的是软件定义的信用,这标志着中心化的国家信用向去中心化的算法信用的根本性变革。近年来,比特币凭借其先发优势,目前已经形成体系完备的涵盖发行、流通和金融衍生市场的生态圈与产业链,这也是其长期占据绝大多数数字加密货币市场份额的主要原因。区块链的发展脉络与趋势
区块链技术是具有普适性的底层技术框架,可以为金融、经济、科技甚至政治等各领域带来深刻变革。按照目前区块链技术的发展脉络,区块链技术将会经历以可编程数字加密货币体系为主要特征的区块链1.0模式,以可编程金融系统为主要特征的区块链2.0模式和以可编程社会为主要特征的区块链3.0模式。然而,上述模式实际上是平行而非演进式发展的,区块链1.0模式的数字加密货币体系仍然远未成熟,距离其全球货币一体化的愿景实际上更远、更困难。目前,区块链领域已经呈现出明显的技术和产业创新驱动的发展态势,相关学术研究严重滞后、亟待跟进。区块链的基础模型与关键技术
一般说来,区块链系统由数据层、网络层、共识层、激励层、合约层和应用层组成。其中,数据层封装了底层数据区块以及相关的数据加密和时间戳等技术;网络层则包括分布式组网机制、数据传播机制和数据验证机制等;共识层主要封装网络节点的各类共识算法;激励层将经济因素集成到区块链技术体系中来,主要包括经济激励的发行机制和分配机制等;合约层主要封装各类脚本、算法和智能合约,是区块链可编程特性的基础;应用层则封装了区块链的各种应用场景和案例。该模型中,基于时间戳的链式区块结构、分布式节点的共识机制、基于共识算力的经济激励和灵活可编程的智能合约是区块链技术最具代表性的创新点。区块链技术的应用场景
区块链技术不仅可以成功应用于数字加密货币领域,同时在经济、金融和社会系统中也存在广泛的应用场景。根据区块链技术应用的现状,本文将区块链目前的主要应用笼统地归纳为数字货币、数据存储、数据鉴证、金融交易、资产管理和选举投票共六个场景:数字货币:以比特币为代表,本质上是由分布式网络系统生成的数字货币,其发行过程不依赖特定的中心化机构。数据存储:区块链的高冗余存储、去中心化、高安全性和隐私保护等特点使其特别适合存储和保护重要隐私数据,以避免因中心化机构遭受攻击或权限管理不当而造成的大规模数据丢失或泄露。数据鉴证:区块链数据带有时间戳、由共识节点共同验证和记录、不可篡改和伪造,这些特点使得区块链可广泛应用于各类数据公证和审计场景。例如,区块链可以永久地安全存储由政府机构核发的各类许可证、登记表、执照、证明、认证和记录等。金融交易:区块链技术与金融市场应用有非常高的契合度。区块链可以在去中心化系统中自发地产生信用,能够建立无中心机构信用背书的金融市场,从而在很大程度上实现了“金融脱媒”;同时利用区块链自动化智能合约和可编程的特点,能够极大地降低成本和提高效率。资产管理:区块链能够实现有形和无形资产的确权、授权和实时监控。无形资产管理方面已经广泛应用于知识产权保护、域名管理、积分管理等领域;有形资产管理方面则可结合物联网技术形成“数字智能资产”,实现基于区块链的分布式授权与控制。选举投票:区块链可以低成本高效地实现政治选举、企业股东投票等应用,同时基于投票可广泛应用于博彩、预测市场和社会制造等领域。区块链技术的现存问题
安全性威胁是区块链迄今为止所面临的最重要的问题。其中,基于PoW共识过程的区块链主要面临的是51%攻击问题,即节点通过掌握全网超过51%的算力就有能力成功篡改和伪造区块链数据。其他问题包括新兴计算技术破解非对称加密机制的潜在威胁和隐私保护问题等。 区块链效率也是制约其应用的重要因素。区块链要求系统内每个节点保存一份数据备份,这对于日益增长的海量数据存储来说是极为困难的。虽然轻量级节点可部分解决此问题,但适用于更大规模的工业级解决方案仍有待研发。比特币区块链目前每秒仅能处理7笔交易,且交易确认时间一般为10分钟,这极大地限制了区块链在大多数金融系统高频交易场景中的应用。 PoW共识过程高度依赖区块链网络节点贡献的算力,这些算力主要用于解决SHA256哈希和随机数搜索,除此之外并不产生任何实际社会价值,因而一般意义上认为这些算力资源是被“浪费”掉了,同时被浪费掉的还有大量的电力资源。如何能有效汇集分布式节点的网络算力来解决实际问题,是区块链技术需要解决的重要问题。 区块链网络作为去中心化的分布式系统,其各节点在交互过程中不可避免地会存在相互竞争与合作的博弈关系,例如比特币矿池的区块截留攻击博弈等。区块链共识过程本质上是众包过程,如何设计激励相容的共识机制,使得去中心化系统中的自利节点能够自发地实施区块数据的验证和记账工作,并提高系统内非理性行为的成本以抑制安全性攻击和威胁,是区块链有待解决的重要科学问题。智能合约与区块链技术
智能合约是一组情景-应对型的程序化规则和逻辑,是部署在区块链上的去中心化、可信共享的程序代码。通常情况下,智能合约经各方签署后,以程序代码的形式附着在区块链数据(例如一笔比特币交易)上,经P2P网络传播和节点验证后记入区块链的特定区块中。智能合约封装了预定义的若干状态及转换规则、触发合约执行的情景(如到达特定时间或发生特定事件等)、特定情景下的应对行动等。区块链可实时监控智能合约的状态,并通过核查外部数据源、确认满足特定触发条件后激活并执行合约。 智能合约对于区块链技术来说具有重要的意义。一方面,智能合约是区块链的激活器,为静态的底层区块链数据赋予了灵活可编程的机制和算法,并为构建区块链2.0和3.0时代的可编程金融系统与社会系统奠定了基础;另一方面,智能合约的自动化和可编程特性使其可封装分布式区块链系统中各节点的复杂行为,成为区块链构成的虚拟世界中的软件代理机器人,这有助于促进区块链技术在各类分布式人工智能系统中的应用,使得基于区块链技术构建各类去中心化应用(Decentralized application, Dapp)、去中心化自治组织(Decentralized Autonomous Organization, DAO)、去中心化自治公司(Decentralized Autonomous Corporation, DAC)甚至去中心化自治社会(Decentralized Autonomous Society, DAS)成为可能。 区块链和智能合约技术的主要发展趋势是由自动化向智能化方向演化。现存的各类智能合约及其应用的本质逻辑大多仍是根据预定义场景的“ IF-THEN”类型的条件响应规则,能够满足目前自动化交易和数据处理的需求。未来的智能合约应具备根据未知场景的“ WHAT-IF”推演、计算实验和一定程度上的自主决策功能,从而实现由目前“自动化”合约向真正的“智能”合约的飞跃。区块链驱动的平行社会
近年来,基于CPSS(Cyber-Physical-SocialSystems)的平行社会已现端倪,其核心和本质特征是虚实互动与平行演化。区块链是实现CPSS平行社会的基础架构之一,其主要贡献是为分布式社会系统和分布式人工智能研究提供了一套行之有效的去中心化的数据结构、交互机制和计算模式,并为实现平行社会奠定了坚实的数据基础和信用基础。 就数据基础而言,管理学家爱德华戴明曾说过:除了上帝,所有人必须以数据说话。然而在中心化社会系统中,数据通常掌握在政府和大型企业等“少数人”手中,为少数人“说话”,其公正性、权威性甚至安全性可能都无法保证。区块链数据则通过高度冗余的分布式节点存储,掌握在“所有人”手中,能够做到真正的“数据民主”。就信用基础而言,中心化社会系统因其高度工程复杂性和社会复杂性而不可避免地会存在“默顿系统”的特性,即不确定性、多样性和复杂性,社会系统中的中心机构和规则制定者可能会因个体利益而出现失信行为;区块链技术有助于实现软件定义的社会系统,其基本理念就是剔除中心化机构、将不可预测的行为以智能合约的程序化代码形式提前部署和固化在区块链数据中,事后不可伪造和篡改并自动化执行,从而在一定程度上能够将“默顿”社会系统转化为可全面观察、可主动控制、可精确预测的“牛顿”社会系统。 ACP(人工社会Artificial Societies、计算实验Computational Experiments和平行执行ParallelExecution)方法是迄今为止平行社会管理领域唯一成体系化的、完整的研究框架,是复杂性科学在新时代平行社会环境下的逻辑延展和创新。 ACP方法可以自然地与区块链技术相结合,实现区块链驱动的平行社会管理。首先,区块链的P2P 组网、分布式共识协作和基于贡献的经济激励等机制本身就是分布式社会系统的自然建模,其中每个节点都将作为分布式系统中的一个自主和自治的智能体(agent)。随着区块链生态体系的完善,区块链各共识节点和日益复杂与自治的智能合约将通过参与各种形式的Dapp,形成特定组织形式的DAC和DAO,最终形成DAS,即ACP中的人工社会。其次,智能合约的可编程特性使得区块链可进行各种“ WHAT-IF” 类型的虚拟实验设计、场景推演和结果评估,通过这种计算实验过程获得并自动或半自动地执行最优决策。最后,区块链与物联网等相结合形成的智能资产使得联通现实物理世界和虚拟网络空间成为可能,并可通过真实和人工社会系统的虚实互动和平行调谐实现社会管理和决策的协同优化。不难预见,未来现实物理世界的实体资产都登记为链上智能资产的时候,就是区块链驱动的平行社会到来之时。
区块链有几种共识算法?
Ripple Consensus(瑞波共识算法)
使一组节点能够基于特殊节点列表达成共识。初始特殊节点列表就像一个俱乐部,要接纳一个新成员,必须由51%的该俱乐部会员投票通过。共识遵循这核心成员的51%权力,外部人员则没有影响力。由于该俱乐部由“中心化”开始,它将一直是“中心化的”,而如果它开始腐化,股东们什么也做不了。
5、PBFT:Practical Byzantine Fault Tolerance(实用拜占庭容错算法)
PBFT是一种状态机副本复制算法,即服务作为状态机进行建模,状态机在分布式系统的不同节点进行副本复制。每个状态机的副本都保存了服务的状态,同时也实现了服务的操作。将所有的副本组成的集合使用大写字母R表示,使用0到|R|-1的整数表示每一个副本。为了描述方便,假设|R|=3f+1,这里f是有可能失效的副本的最大个数。尽管可以存在多于3f+1个副本,但是额外的副本除了降低性能之外不能提高可靠性。
PBFT算法主要特点如下:客户端向主节点发送请求调用服务操作;主节点通过广播将请求发送给其他副本;所有副本都执行请求并将结果发回客户端;客户端需要等待f+1个不同副本节点发回相同的结果,作为整个操作的最终结果。
区块链建模难吗
不难。区块链建模就是一组包含数据块的数据链条,直接做出来就好,是不难的。建模就是建立模型,就是为了理解事物而对事物做出的一种抽象,是对事物的一种无歧义的书面描述。
区块链分布式存储:生态大数据的存储新模式
区块链,当之无愧的2019最靓的词,在 科技 领域闪闪发亮,在实体行业星光熠熠。
2019年的1024讲话,让区块链这个词焕然一新,以前它总是和传销和诈骗联系在一起,“区块链”这个词总是蒙上一层灰色。但是如今,区块链则是和实体经济融合紧密相连,成为国家的战略技术, 这个词瞬间闪耀着热情的红色和生意盎然的绿色 。
“产业区块链”在这个时代背景下应运而生, 是继“互联网”后的又一大热门词汇,核心就是区块链必须和实体产业融合,脱虚向实,让区块链技术找到更多业务场景才是正道。
区块链的本质就是一个数据库,而且是采用的分布式存储的方式。作为一名区块链从业者,今天就来讲讲 区块链的分布式存储和生态大数据 结合后,碰撞产生的火花。
当前的存储大多为中心化存储,存储在传统的中心化服务器。如果服务器出现宕机或者故障,或者服务器停止运营,则很多数据就会丢失。
比如我们在微信朋友圈发的图片,在抖音上传的视频等等,都是中心化存储。很多朋友会把东西存储在网上,但是某天打开后,网页呈现404,则表示存储的东西已经不见了。
区块链,作为一个分布式的数据库,则能很好解决这方面的问题。这是由区块链的技术特征决定了的。 区块链上的数字记录,不可篡改、不可伪造,智能合约让大家更高效地协同起来,从而建立可信的数字经济秩序,能够提高数据流转效率,打破数据孤岛,打造全新的存储模式。
生态大数据,其实和我们每天的生活息息相关,比如每天的天气预报,所吃的农产品的溯源数据等等,都是生态大数据的一部分。要来谈这个结合,首先咱们来看看生态大数据存储的特点。
伴随着互联网的发展,当前,生态大数据在存储方面有具有如下特点:
从数据规模来看,生态数据体量很大,数据已经从TB级跃升到了PB级别。
随着各类传感器技术、卫星遥感、雷达和视频感知等技术的发展,数据不仅来源于传统人工监测数据,还包括航空、航天和地面数据,他们一起产生了海量生态环境数据。近10年以来,生态数据以每年数百个TB的数据在增长。
生态环境大数据需要动态新数据和 历史 数据相结合来处理,实时连续观测尤为重要。只有实时处理分析这些动态新数据,并与已有 历史 数据结合起来分析,才能挖掘出有用信息,为解决有关生态环境问题提供科学决策。
比如在当前城市建设中,提倡的生态环境修复、生态模型建设中,需要大量调用生态大数据进行分析、建模和制定方案。但是目前很多 历史 数据因为存储不当而消失,造成了数据的价值的流失。
既然生态大数据有这些特点,那么它有哪些存储需求呢?
当前,生态大数据面临严重安全隐患,强安全的存储对于生态大数据而言势在必行。
大数据的安全主要包括大数据自身安全和大数据技术安全,比如在大数据的数据存储中,由于黑客外部网络攻击和人为操作不当造成数据信息泄露。外部攻击包括对静态数据和动态数据的数据传输攻击、数据内容攻击、数据管理和网络物理攻击等。
例如,很多野外生态环境监测的海量数据需要网络传输,这就加大了网络攻击的风险。如果涉及到军用的一些生态环境数据,如果被黑客获得这些数据,就可能推测到我国军方的一些信息,或者获取敏感的生态环境数据,后果不堪设想。
生态大数据的商业化应用需要整合集成政府、企业、科研院所等 社会 多来源的数据。只有不同类型的生态环境大数据相互连接、碰撞和共享,才能释放生态环境大数据的价值。
以当前的智慧城市建设为例,很多城市都在全方位、多维度建立知识产权、种质资源、农资、农产品、病虫害疫情等农业信息大数据中心,为农业产供销提供全程信息服务。建设此类大数据中心,离不开各部门生态大数据的共享。
但是,生态大数据共享面临着巨大挑战。首先,我国生态环境大数据包括气象、水利、生态、国土、农业、林业、交通、 社会 经济等其他部门的大数据,涉及多领域多部门和多源数据。虽然目前这些部门已经建立了自己的数据平台,但这些平台之间互不连通,只是一个个的数据孤岛。
其次,相关部门因为无法追踪数据的轨迹,担心数据的利益归属问题,便无法实现数据的共享。因此,要想挖掘隐藏在生态大数据背后的潜在价值,实现安全的数据共享是关键,也是生态大数据产生价值的前提和基础。
生态大数据来之不易,是研究院所、企业、个人等 社会 来源的集体智慧。
其中,很多生态大数据涉及到了知识产权的保护。但是目前的中心化存储无法保证知识产权的保护,无法对数据的使用进行溯源管理,容易造成知识产权的侵犯和隐私数据的泄露。
这些就是生态大数据在存储方面的需求。在当前产业区块链快速发展的今天,区块链的分布式存储是可以为生态大数据存储提供全新的存储方式的。 这个核心前提就是区块链的分布式存储、不可篡改和数据追踪特性 。
把区块链作为底层技术,搭建此类平台,专门存储生态大数据,可以设置节点管理、存储管理、用户管理、许可管理、业务通道管理等。针对上层业务应用提供高可用和动态扩展的区块链网络底层服务的实现。在这个平台的应用层,可以搭建API接口,让整个平台的使用灵活可扩展。区块链分布式存储有如下特点:
利用区块链的分布式存储,能够实现真正的生态大数据安全存储。
首先,数据永不丢失。这点对于生态大数据的 历史 数据特别友好,方便新老数据的调用和对比。
其次,数据不易被泄露或者攻击。因为数据采取的是分布式存储,如果遭遇攻击,也只能得到存储在部分节点里的数据碎片,无法完全获得完整的数据信息或者数据段。
区块链能够实现生态数据的存储即确权,这样就能够避免知识产权被侵害,实现安全共享。毕竟生态大数据的获取,是需要生态工作者常年在野外驻守,提取数据的。
生态大数据来之不易,是很多生态工作者的工作心血和结晶,需要得到产权的保护,让数据体现出应用价值和商业价值,保护生态工作者的工作动力,让他们能够深入一线,采集出更多优质的大数据。
同时,利用区块链的数据安全共享机制,也能够打破气象、林业、湿地等部门的数据壁垒,构建安全可靠的数据共享机制,让数据流转更具价值。
现在有部分生态工作者,为了牟取私利,会将生态数据篡改。如果利用区块链技术,则没有那么容易了。
利用加密技术,把存储的数据放在分布式存储平台进行加密处理。如果生态大数据发生变更,平台就可以记录其不同版本,便于事后追溯和核查。
这个保护机制主要是利用了数据的不可篡改,满足在使用生态大数据的各类业务过程中对数据的安全性的要求。
区块链能够对数据提供安全监控,记录应用系统的操作日志、数据库的操作日志数据,并加密存储在系统上,提供日志预警功能,对于异常情况通过区块链浏览器展示出来,便于及时发现违规的操作和提供证据。
以上就是区块链的分布式存储能够在生态大数据方面所起的作用。未来,肯定会出现很多针对生态大数据存储的平台诞生。
生态大数据是智慧城市建设的重要基础资料 ,引用区块链技术,打造相关的生态大数据存储和管理平台,能够保证生态大数据的安全存储和有效共享,为智慧城市建设添砖加瓦,推动产业区块链的发展。
作者:Justina,微信公众号:妙译生花,从事于区块链运营,擅长内容运营、海外媒体运营。
题图来自Unsplash, 基于CC0协议。
话说区块链溯源技术,这个是什么呢?
随着近两年区块链技术的发展,区块链防伪溯源的特性被认为是最有应用前景的区块链落地领域之一,各大科技巨头纷纷布局,那么区块链溯源系统搭建的过程中,技术架构层面有哪些需要注意的事项呢?
数据溯源技术的关键,在于数据模型的构建,它决定了数据起源的获取、存储以及后期的使用等操作。首先,需要对不同业务和不同应用的数据进行抽象建模,并对数据接入进行规范;其次,把不同应用和业务的整个过程划分不同阶段,并对不同阶段的业务数据进行分组;最后,通过数据特征标识获取到数据的全链路历史版本。
溯源应用的业务从开始到结束的整个过程中,包含生产、行业、城市、区域、用户等十多个节点和池塘、林场、农田、生产、加工、包装、物流等诸多环节。如果要正确的对业务应用进行溯源追踪,需要对溯源应用的生命周期进行管理。因此,溯源应用的总体架构设计需要包括:应用层、服务层、核心层、基础层和管理层共5个层次结构,以及33个典型模块。
应用层是溯源数据的来源端,也是溯源服务的接收端。如物联网设备、相应企业与个人前端应用;
服务层为溯源应用提供核心区块链相关服务,保证了服务的高可用性、高便捷性。如可信的分布式身份服务DID作为物或人的认证标识,可靠的数据接入,精准的数据计算,安全的元数据管理;
核心层是区块链系统的最重要的组成部分,将会影响整 个系统的安全性和可靠性。如共识机制、P2P网络传输、隐私保护;
基础层提供了基本的互联网基础信息服务,主要是为上层架构组件提供基础设施,物联网loT设备决定了数据来源的可靠性,区块链保证了数据的真实性,将数据安全的存储、分析和计算,提供高效、精准的数据服务;
管理层是溯源应用落地过程中必不可少的重要组件。权威质检中心、溯源数据中心、监控中心,提供了流转数据过程的可靠性,由区块链作为价值背书。
写到这里,本文关于区块链建模和区块链模板的介绍到此为止了,如果能碰巧解决你现在面临的问题,如果你还想更加了解这方面的信息,记得收藏关注本站。
标签: #区块链建模
评论列表