区块链event机制 区块链ifo

皕利分享 83 0

本篇文章给大家谈谈区块链event机制,以及区块链ifo对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

区块链的四种共识机制

区块链的共识机制可以分为以下四类:权益证明机制、工作量证明机制、Pool验证和池股份授权证明机制。

区块链,就是一个又一个区块组成的链条。每一个区块中保存了一定的信息,它们按照各自产生的时间顺序连接成链条。这个链条被保存在所有的服务器中,只要整个系统中有一台服务器可以工作,整条区块链就是安全的。这些服务器在区块链系统中被称为节点,它们为整个区块链系统提供存储空间和算力支持。

区块链有哪些特点和运作机制?

区块链是一种共享的分布式数据库技术。尽管不同报告中对区块链的一句话介绍措辞都不相同,但以下4个技术特点是共识性的。\x0d\x0a1. 去中心化(Decentralized):图1的左侧描述了当今金融系统的中心化特征,右侧描述的是正在形成的去中心化金融系统,其没有中介机构,所有节点的权利和义务都相等,任一节点停止工作都会不影响系统整体的运作;\x0d\x0a2. 去信任(Trustless):系统中所有节点之间无需信任也可以进行交易,因为数据库和整个系统的运作是公开透明的,在系统的规则和时间范围内,节点之间无法欺骗彼此;\x0d\x0a3. 集体维护(Collectively Maintain):系统是由其中所有具有维护功能的节点共同维护的,系统中所有人共同参与维护工作;\x0d\x0a4. 可靠数据库(Reliable Database):系统中每一个节点都拥有最新的完整数据库拷贝,修改单个节点的数据库是无效的,因为系统会自动比较,认为最多次出现的相同数据记录为真。\x0d\x0a比特币、以太坊、DECENT这些项目的区块链都是具备这些特点的。

浅析 Fabric Peer 节点

Hyperledger Fabric,也称之为超级账本,是由 IBM 发起,后成为 Linux 基金会 Hyperledger 中的区块链项目之一。

Fabric 是一个提供分布式账本解决方案的平台,底层的账本数据存储使用了区块链。区块链平台通常可以分为公有链、联盟链和私有链。公有链典型的代表是比特币这些公开的区块链网络,谁都可以加入到这个网络中。联盟链则有准入机制,无法随意加入到网络中,联盟链的典型例子就是 Fabric。

Fabric 不需要发币来激励参与方,也不需要挖矿来防止有人作恶,所以 Fabric 有着更好的性能。在Fabric 网络中,也有着诸多不同类型的节点来组成网络。其中 Peer 节点承载着账本和智能合约,是整个区块链网络的基础。在这篇文章中,会详细分析 Peer 的结构及其运行方式。

在本文中,假设读者已经了解区块链、智能合约等概念。

本文基于 Fabric1.4 LTS。

区块链网络是一个分布式的网络,Fabric 也是如此,由于 Fabric 是联盟链,需要准入机制,所以在网络结构上会复杂很多,下面是一个简化的 Fabric 网络:

各个元素的含义如下:

对于 Fabric 网络,外部的用户需要通过客户端应用,也就是图中的 A1、A2 或者 A3 来访问网络,客户端应用需要通过 CA 证书表明自己的身份,这样才能访问到 Fabric 网络中有权限访问的部分。

在上面的网络中,共有四个组织,R1、R2、R3 和 R4。其中 R4 是整个 Fabric 网络的创建者,网络是根据 NC4 配置的。

在 Fabric 网络中,不同的组织可以组成联盟,不同的联盟之间数据通过 Channel 来隔离。Channel 中的数据只有该联盟中的组织才能访问,每一个新的 Channel 都可以认为是一条新的链。与其他的区块链网络中通常只有一条链不一样,Fabric 可以通过 Channel 在网络中快速的搭建出一个新的区块链。

上面 R1 和 R2 组成了一个联盟,在 C1 上交易。R2 同时又和 R3 组成了另外一个联盟,在 C2 上交易。R1 和 R2 在 C1 上交易时,对 R3 是不可见的,R2 和 R3 在 C2 上交易时,对 R1 是不可见的。Channel 机制提供了很好的隐私保护能力。

Orderer 节点是整个 Fabric 网络共有的,用来为所有的交易排序、打包。比如上面网络中 O4 节点。本文不会对 Orderer 节点进行详细说明,可以把这个功能理解为比特币网络中的挖矿过程。

Peer 节点表示网络中的节点,通常一个 Peer 就表示一个组织,Peer 是整个区块链网络的基础,是智能合约和账本的载体,Peer 也是本文讨论的重点。

一个 Peer 节点可以承载多套账本和智能合约,比如 P2 节点,既维护了 C1 的账本和智能合约,也维护了 C2 的账本和智能合约。

为了可以更深入了解 Peer 节点的作用,先了解一下 Fabric 整体的交易流程。整体的交易流程图如下:

Peer 节点按照功能来分可以分为 背书节点 和 记账节点 。

客户端会提交交易请求到背书节点,背书节点开始模拟执行交易,在模拟执行之后,背书节点并不会去更新账本数据,而是把这个交易进行加密和签名,然后返回给客户端。

客户端收到这个响应之后就会把响应提交到 Orderer 节点,Orderer 节点会对这些交易进行排序,并打包成区块,然后分发到记账节点,记账节点就会对交易进行验证,验证结束之后,就会把交易记录到账本里面。

一笔交易是否能成功是根据背书策略来指定的,每一个智能合约都会指定一个背书策略。

Peer 节点代表着联盟链中的各个组织,区块链网络也是由 Peer 节点来组成的,而且也是账本和智能合约的载体。

通过对上面交易过程的了解可以知道,Peer 节点是主要的参与方。如果用户想要访问账本资源,都必须要和 peer 节点进行交互。在一个 Peer 节点中,可以同时维护多个账本,这些账本属于不同的 Channel 。每个 Peer 节点都会维护一套冗余账本,这样就避免了单点故障。

Peer 节点根据在交易中的不同角色,可以分成背书节点(Endorser)和记账节点(Committer),背书节点会对交易进行模拟执行,记账节点才会真正将数据存储到账本中。

账本可以分成两个部分,一部分是区块链,另一部分是 Current State,也被称之为 World State。

区块链上只能追加,不能对过去的数据进行修改,链上也包含两部分信息,一部分是通道的配置信息,另一部分是不可修改,序列化的记录。每一个区块记录前一个区块的信息,然后连成链,如下图所示:

第一个区块被称之为 genesis block,其中不存储交易信息。每个区块可以被分为 区块头 、 区块数据 和 区块元数据 。区块头中存储着当前区块的区块号、当前区块的 hash 值和上一个区块的 hash 值,这样才能把所有的区块连接起来。区块数据中包含了交易数据。区块元数据中则包括了区块写入的时间、写入人及签名。

其中每一笔交易的结构如下,在 Header 中,包含了 ChainCode 的名称、版本信息。Signature 就是交易发起用户的签名。Proposal 中主要是一些参数。Response 中是智能合约执行的结果。Endorsements 中是背书结果返回的结果。

WorldState中维护了账本的当前状态,数据以 Key-Value 的形式存储,可以快速查询和修改,每一次对 WorldState 的修改都会被记录到区块链中。WorldState 中的数据需要依赖外部的存储,通常使用 LevelDB 或者 CouchDB。

区块链和 WorldState 组成了一个完整的账本,World State 保证的业务数据的灵活变化,而区块链则保证了所有的修改是可追溯和不可篡改的。

在交易完成之后,数据已经写入账本,就需要将这些数据同步到其他的 Peer,Fabric 中使用的是 Gossip 协议。Gossip 也是 Channel 隔离的,只会在 Channel 中的 Peer 中广播和同步账本数据。

智能合约需要安装到 Peer 节点上,智能合约是访问账本的唯一方式。智能合约可以通过 Go、Java 等变成语言进行编写。

智能合约编写完成之后,需要打包到 ChainCode 中,每个 ChainCode 中可以包含多个智能合约。ChainCode 需要安装,ChainCode 需要安装到 Peer 节点上。安装好了之后,ChainCode 需要在 Channel 上实例化,实例化的时候需要指定背书策略。

智能合约在实例化之后就可以用来与账本进行交互了,流程图如下:

用户编写并部署实例化智能合约之后,就可以通过客户端应用程序来向智能合约提交请求,智能合约会对 WorldState 中数据进行 get、put 或者 delete。其中 get 操作直接从 WorldState 中读取交易对象当前的状态信息,不会去区块链上写入信息,但 put 和 delete 操作除了修改 WorldState,还会去区块链中写入一条交易信息,且交易信息不能修改。

区块链上的信息可以通过智能合约访问,也可以在客户端应用通过 API 直接访问。

Event 是客户端应用和 Fabric 网络交互的一种方式,客户端应用可以订阅 Event,当 Event 发生时,客户端应用就会接受到消息。

事件源可以两类,一类是智能合约发出的 Event,另一类是账本变更触发的 Event。用户可以从 Event 中获取到交易的信息,比如区块高度等信息。

在这篇文章中,首先介绍了 Fabric 整体的网络架构,通过对 Fabric 交易流程的分析,讨论了 peer 节点在交易中的作用,然后详细分析了 peer 节点所维护的账本和智能合约,并分析了 peer 节点维护账本以及 peer 节点执行智能合约的流程。

文 / Rayjun

[1]

[2]

[3]

区块链常见的三大共识机制

区块链是建立在P2P网络区块链event机制,由节点参与的分布式账本系统,最大的特点是“去中心化”。也就是说在区块链系统中,用户与用户之间、用户与机构之间、机构与机构之间,无需建立彼此之间的信任,只需依靠区块链协议系统就能实现交易。

可是,要如何保证账本的准确性,权威性,以及可靠性?区块链网络上的节点为什么要参与记账?节点如果造假怎么办?如何防止账本被篡改?如何保证节点间的数据一致性?……这些都是区块链在建立“去中心化”交易时需要解决的问题,由此产生了共识机制。

所谓“共识机制”,就是通过特殊节点的投票,在很短的时间内完成对交易的验证和确认;当出现意见不一致时,在没有中心控制的情况下,若干个节点参与决策达成共识,即在互相没有信任基础的个体之间如何建立信任关系。

区块链技术正是运用一套基于共识的数学算法,在机器之间建立“信任”网络,从而通过技术背书而非中心化信用机构来进行全新的信用创造。

不同的区块链种类需要不同的共识算法来确保区块链上最后的区块能够在任何时候都反应出全网的状态。

目前为止,区块链共识机制主要有以下几种:POW工作量证明、POS股权证明、DPOS授权股权证明、Paxos、PBFT(实用拜占庭容错算法)、dBFT、DAG(有向无环图)

接下来区块链event机制我们主要说说常见的POW、POS、DPOS共识机制的原理及应用场景

概念:

工作量证明机制(Proof of work ),最早是一个经济学名词,指系统为达到某一目标而设置的度量方法。简单理解就是一份证明,用来确认你做过一定量的工作,通过对工作的结果进行认证来证明完成了相应的工作量。

工作量证明机制具有完全去中心化的优点,在以工作量证明机制为共识的区块链中,节点可以自由进出,并通过计算随机哈希散列的数值解争夺记账权,求得正确的数值解以生成区块的能力是节点算力的具体表现。

应用:

POW最著名的应用当属比特币。在比特币网络中,在Block的生成过程中,矿工需要解决复杂的密码数学难题,寻找到一个符合要求的Block Hash由N个前导零构成,零的个数取决于网络的难度值。这期间需要经过大量尝试计算(工作量),计算时间取决于机器的哈希运算速度。

而寻找合理hash是一个概率事件,当节点拥有占全网n%的算力时,该节点即有n/100的概率找到Block Hash。在节点成功找到满足的Hash值之后,会马上对全网进行广播打包区块,网络的节点收到广播打包区块,会立刻对其进行验证。

如果验证通过,则表明已经有节点成功解迷,自己就不再竞争当前区块,而是选择接受这个区块,记录到自己的账本中,然后进行下一个区块的竞争猜谜。网络中只有最快解谜的区块,才会添加的账本中,其他的节点进行复制,以此保证了整个账本的唯一性。

假如节点有任何的作弊行为,都会导致网络的节点验证不通过,直接丢弃其打包的区块,这个区块就无法记录到总账本中,作弊的节点耗费的成本就白费了,因此在巨大的挖矿成本下,也使得矿工自觉自愿的遵守比特币系统的共识协议,也就确保了整个系统的安全。

优缺点

优点:结果能被快速验证,系统承担的节点量大,作恶成本高进而保证矿工的自觉遵守性。

缺点:需要消耗大量的算法,达成共识的周期较长

概念:

权益证明机制(Proof of Stake),要求证明人提供一定数量加密货币的所有权。

权益证明机制的运作方式是,当创造一个新区块时,矿工需要创建一个“币权”交易,交易会按照预先设定的比例把一些币发送给矿工本身。权益证明机制根据每个节点拥有代币的比例和时间,依据算法等比例地降低节点的挖矿难度,从而加快了寻找随机数的速度。

应用:

2012年,化名Sunny King的网友推出了Peercoin(点点币),是权益证明机制在加密电子货币中的首次应用。PPC最大创新是其采矿方式混合了POW及POS两种方式,采用工作量证明机制发行新币,采用权益证明机制维护网络安全。

为了实现POS,Sunny King借鉴于中本聪的Coinbase,专门设计了一种特殊类型交易,叫Coinstake。

上图为Coinstake工作原理,其中币龄指的是货币的持有时间段,假如你拥有10个币,并且持有10天,那你就收集到了100天的币龄。如果你使用了这10个币,币龄被消耗(销毁)了。

优缺点:

优点:缩短达成共识所需的时间,比工作量证明更加节约能源。

缺点:本质上仍然需要网络中的节点进行挖矿运算,转账真实性较难保证

概念:

授权股权证明机制(Delegated Proof of Stake),与董事会投票类似,该机制拥有一个内置的实时股权人投票系统,就像系统随时都在召开一个永不散场的股东大会,所有股东都在这里投票决定公司决策。

授权股权证明在尝试解决传统的PoW机制和PoS机制问题的同时,还能通过实施科技式的民主抵消中心化所带来的负面效应。基于DPoS机制建立的区块链的去中心化依赖于一定数量的代表,而非全体用户。在这样的区块链中,全体节点投票选举出一定数量的节点代表,由他们来代理全体节点确认区块、维持系统有序运行。

同时,区块链中的全体节点具有随时罢免和任命代表的权力。如果必要,全体节点可以通过投票让现任节点代表失去代表资格,重新选举新的代表,实现实时的民主。

应用:

比特股(Bitshare)是一类采用DPOS机制的密码货币。通过引入了见证人这个概念,见证人可以生成区块,每一个持有比特股的人都可以投票选举见证人。得到总同意票数中的前N个(N通常定义为101)候选者可以当选为见证人,当选见证人的个数(N)需满足:至少一半的参与投票者相信N已经充分地去中心化。

见证人的候选名单每个维护周期(1天)更新一次。见证人然后随机排列,每个见证人按序有2秒的权限时间生成区块,若见证人在给定的时间片不能生成区块,区块生成权限交给下一个时间片对应的见证人。DPoS的这种设计使得区块的生成更为快速,也更加节能。

DPOS充分利用了持股人的投票,以公平民主的方式达成共识,他们投票选出的N个见证人,可以视为N个矿池,而这N个矿池彼此的权利是完全相等的。持股人可以随时通过投票更换这些见证人(矿池),只要他们提供的算力不稳定,计算机宕机,或者试图利用手中的权力作恶。

优缺点:

优点:缩小参与验证和记账节点的数量,从而达到秒级的共识验证

缺点:中心程度较弱,安全性相比POW较弱,同时节点代理是人为选出的,公平性相比POS较低,同时整个共识机制还是依赖于代币的增发来维持代理节点的稳定性。

Solidity之Event

Event是以太坊只能合约里面的一个成员就像下图里一样:

那么Event到底是什么呢?是用来干什么的呢?下面是官网上给出的介绍:

Event可以方便地使用EVM日志记录工具,而这些工具又可以在一个Dapp的用户界面中“调用”JavaScript callbacks,这些JavaScript callbacks是用来listen for these events的。

Event是可继承的合同成员。当它们被调用时,它们使得参数被存储在 交易的日志 中 - 区块链中的一块特殊数据结构。这些日志与合同所属的地址相关联,将被并入区块链中并保存在上面,和所属的该区块共存不离不弃。日志和事件数据 不能从合同内访问 (连从创建它们的合同内都不行)。

区块链几大共识机制及优缺点

首先,没有一种共识机制是完美无缺的,各共识机制都有其优缺点,有些共识机制是为解决一些特定的问题而生。

1.pow( Proof of Work)工作量证明

一句话介绍:干的越多,收的越多。

依赖机器进行数学运算来获取记账权,资源消耗相比其他共识机制高、可监管性弱,同时每次达成共识需要全网共同参与运算,性能效率比较低,容错性方面允许全网50%节点出错。

优点:

1)算法简单,容易实现;

2)节点间无需交换额外的信息即可达成共识;

3)破坏系统需要投入极大的成本;

缺点:

1)浪费能源;

2)区块的确认时间难以缩短;

3)新的区块链必须找到一种不同的散列算法,否则就会面临比特币的算力攻击;

4)容易产生分叉,需要等待多个确认;

5)永远没有最终性,需要检查点机制来弥补最终性;

2.POS Proof of Stake,权益证明

一句话介绍:持有越多,获得越多。

主要思想是节点记账权的获得难度与节点持有的权益成反比,相对于PoW,一定程度减少了数学运算带来的资源消耗,性能也得到了相应的提升,但依然是基于哈希运算竞争获取记账权的方式,可监管性弱。该共识机制容错性和PoW相同。它是Pow的一种升级共识机制,根据每个节点所占代币的比例和时间,等比例的降低挖矿难度,从而加快找随机数的速度

优点:在一定程度上缩短了共识达成的时间;不再需要大量消耗能源挖矿。

缺点:还是需要挖矿,本质上没有解决商业应用的痛点;所有的确认都只是一个概率上的表达,而不是一个确定性的事情,理论上有可能存在其他攻击影响。例如,以太坊的DAO攻击事件造成以太坊硬分叉,而ETC由此事件出现,事实上证明了此次硬分叉的失败。

DPOS与POS原理相同,只是选了一些“人大代表”。

BitShares社区首先提出了DPoS机制。

与PoS的主要区别在于节点选举若干代理人,由代理人验证和记账。其合规监管、性能、资源消耗和容错性与PoS相似。类似于董事会投票,持币者投出一定数量的节点,代理他们进行验证和记账。

DPoS的工作原理为:

去中心化表示每个股东按其持股比例拥有影响力,51%股东投票的结果将是不可逆且有约束力的。其挑战是通过及时而高效的方法达到51%批准。为达到这个目标,每个股东可以将其投票权授予一名代表。获票数最多的前100位代表按既定时间表轮流产生区块。每名代表分配到一个时间段来生产区块。所有的代表将收到等同于一个平均水平的区块所含交易费的10%作为报酬。如果一个平均水平的区块含有100股作为交易费,一名代表将获得1股作为报酬。

网络延迟有可能使某些代表没能及时广播他们的区块,而这将导致区块链分叉。然而,这不太可能发生,因为制造区块的代表可以与制造前后区块的代表建立直接连接。建立这种与你之后的代表(也许也包括其后的那名代表)的直接连接是为了确保你能得到报酬。

该模式可以每30秒产生一个新区块,并且在正常的网络条件下区块链分叉的可能性极其小,即使发生也可以在几分钟内得到解决。

成为代表:

成为一名代表,你必须在网络上注册你的公钥,然后分配到一个32位的特有标识符。然后该标识符会被每笔交易数据的“头部”引用。

授权选票:

每个钱包有一个参数设置窗口,在该窗口里用户可以选择一个或更多的代表,并将其分级。一经设定,用户所做的每笔交易将把选票从“输入代表”转移至“输出代表”。一般情况下,用户不会创建特别以投票为目的的交易,因为那将耗费他们一笔交易费。但在紧急情况下,某些用户可能觉得通过支付费用这一更积极的方式来改变他们的投票是值得的。

保持代表诚实:

每个钱包将显示一个状态指示器,让用户知道他们的代表表现如何。如果他们错过了太多的区块,那么系统将会推荐用户去换一个新的代表。如果任何代表被发现签发了一个无效的区块,那么所有标准钱包将在每个钱包进行更多交易前要求选出一个新代表。

抵抗攻击:

在抵抗攻击上,因为前100名代表所获得的权力权是相同的,每名代表都有一份相等的投票权。因此,无法通过获得超过1%的选票而将权力集中到一个单一代表上。因为只有100名代表,可以想象一个攻击者对每名轮到生产区块的代表依次进行拒绝服务攻击。幸运的是,由于事实上每名代表的标识是其公钥而非IP地址,这种特定攻击的威胁很容易被减轻。这将使确定DDOS攻击目标更为困难。而代表之间的潜在直接连接,将使妨碍他们生产区块变得更为困难。

优点:大幅缩小参与验证和记账节点的数量,可以达到秒级的共识验证。

缺点:整个共识机制还是依赖于代币,很多商业应用是不需要代币存在的。

3.PBFT :Practical Byzantine Fault Tolerance,实用拜占庭容错

介绍:在保证活性和安全性(liveness safety)的前提下提供了(n-1)/3的容错性。

在分布式计算上,不同的计算机透过讯息交换,尝试达成共识;但有时候,系统上协调计算机(Coordinator / Commander)或成员计算机 (Member /Lieutanent)可能因系统错误并交换错的讯息,导致影响最终的系统一致性。

拜占庭将军问题就根据错误计算机的数量,寻找可能的解决办法,这无法找到一个绝对的答案,但只可以用来验证一个机制的有效程度。

而拜占庭问题的可能解决方法为:

在 N ≥ 3F + 1 的情况下一致性是可能解决。其中,N为计算机总数,F为有问题计算机总数。信息在计算机间互相交换后,各计算机列出所有得到的信息,以大多数的结果作为解决办法。

1)系统运转可以脱离币的存在,pbft算法共识各节点由业务的参与方或者监管方组成,安全性与稳定性由业务相关方保证。

2)共识的时延大约在2~5秒钟,基本达到商用实时处理的要求。

3)共识效率高,可满足高频交易量的需求。

缺点:

1)当有1/3或以上记账人停止工作后,系统将无法提供服务;

2)当有1/3或以上记账人联合作恶,且其它所有的记账人被恰好分割为两个网络孤岛时,恶意记账人可以使系统出现分叉,但是会留下密码学证据

下面说两个国产的吧~

4.dBFT: delegated BFT 授权拜占庭容错算法

介绍:小蚁采用的dBFT机制,是由权益来选出记账人,然后记账人之间通过拜占庭容错算法来达成共识。

此算法在PBFT基础上进行了以下改进:

将C/S架构的请求响应模式,改进为适合P2P网络的对等节点模式;

将静态的共识参与节点改进为可动态进入、退出的动态共识参与节点;

为共识参与节点的产生设计了一套基于持有权益比例的投票机制,通过投票决定共识参与节点(记账节点);

在区块链中引入数字证书,解决了投票中对记账节点真实身份的认证问题。

优点:

1)专业化的记账人;

2)可以容忍任何类型的错误;

3)记账由多人协同完成,每一个区块都有最终性,不会分叉;

4)算法的可靠性有严格的数学证明;

缺点:

1)当有1/3或以上记账人停止工作后,系统将无法提供服务;

2)当有1/3或以上记账人联合作恶,且其它所有的记账人被恰好分割为两个网络孤岛时,恶意记账人可以使系统出现分叉,但是会留下密码学证据;

以上总结来说,dBFT机制最核心的一点,就是最大限度地确保系统的最终性,使区块链能够适用于真正的金融应用场景。

5.POOL验证池

基于传统的分布式一致性技术,加上数据验证机制。

优点:不需要代币也可以工作,在成熟的分布式一致性算法(Pasox、Raft)基础上,实现秒级共识验证。

缺点:去中心化程度不如bictoin;更适合多方参与的多中心商业模式。

区块链event机制的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于区块链ifo、区块链event机制的信息别忘了在本站进行查找喔。

标签: #区块链event机制

  • 评论列表

留言评论